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Abstract

This paper presents a novel stochastic volatility model called Dynamic Shrinkage Process in

Volatility (DSP-V). The key difference to the existing stochastic volatility model lies in the incor-

poration of global-local prior called Dynamic Shrinkage Process, allowing DSP-V to be dynam-

ically adaptive to evolving processes. Unlike existing models, the strength of DSP-V is evident

in its flexibility, as demonstrated by its superior or comparable performance when compared to

established models such as Stochastic Volatility (SV), Markov Switching SV, Generalized Au-

toRegressive Conditional Heteroskedasticity (GARCH), and Markov Switching GARCH, across

diverse data generating scenarios. Notably, DSP-V exhibits resilience to model mispecification

biases, making it a robust tool in financial modeling. In addition, DSP-V produces smoother

and more interpretable estimate of log-volatility term ht, facilitating a clearer understanding of

underlying patterns and trends.

1 Introduction

Volatility modeling has become a pivotal topic in the realm of finance, demonstrating its signif-

icance through its diverse applications in asset pricing, portfolio management, and risk assessment.

In its early days, the financial world assumed volatility to be constant. Pivotal work by Merton

[1969] on portfolio selection and Black and Scholes [1973] on option pricing both assume volatil-

ity to be time invariant. It has now been widely acknowledged that volatility evolves over time,

hence the name stochastic volatility. Several popular stochastic volatility models have emerged

including the Autoregressive Conditional Heteroskedasticity (ARCH) model by Engle [1982] and

later extended into the Generalized ARCH (GARCH) model by Bollerslev [1986]. Another no-
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table model is the Stochastic Volatility (SV) model, which was explored by Hull and White [1987],

Taylor [2008] and Melino and Turnbull [1990]. A key common assumption among these models is

stationarity, or more specifically, constant unconditional volatility; while the conditional volatility

is assumed to evolve over time, the unconditional volatility, on the other hand, is still assumed

to be constant. This assumption becomes too restrictive when structural changes occur in the

unconditional volatility. Many empirical (Dieobold [1986], French et al. [1987], Chou [1988], Poon

and Taylor [1992], So et al. [1997], Su and Wang [2020]) as well as theoretical studies (Mikosch and

Stărică [2004], Messow and Krämer [2013], Lamoureux and Lastrapes [1990]) point to the existence

of structural changes in variety of financial and economic data sets. Therefore, the need for a more

flexible stochastic volatility model has become evident.

A commonly employed method for addressing structural changes in the unconditional volatility

is the incorporation of Markov switching into the existing models such as SV or (G)ARCH. Specif-

ically, Markov Switching has been incorporated into the ARCH model by Hamilton and Susmel

[1994] and Cai [1994], the GARCH model by Bauwens et al. [2010] and Gray [1996], and the SV

model by So et al. [1998] and Hwang et al. [2004]. Such models allow parameters to come from one

of several regimes, with transitions between regimes governed by a Markov process, directly model-

ing the structural breaks. However, a problem persists in this approach, as one needs to determine

the number of regimes a priori, which can be a challenging task. Moreover, parameter estimations

become even more challenging as we increase the number of regimes. Often, the number of regimes

are set to 2 to 3 regimes denoting low to high volatility regimes.

We propose the model named Dynamic Shrinkage Process in Volatility (DSP-V). The model

stands apart from existing models in its introduction of time-varying parameters, ωt, with global-

local priors called Dynamic Shrinkage Process (DSP) Kowal et al. [2019]. Rather than relying on a

fixed number of parameters, the evolution of the process is assumed to be governed by time varying

parameters ωt. We then incorporate a suitable global-local shrinkage priors, on the variance term of

ωt to induce desirable locally adaptive shrinkage properties. The resulting model presents a flexible

and adaptive solution for modeling stochastic volatility, capable of capturing both abrupt structural

changes as well as gradual changes over time. In addition, the estimated volatility from DSP-V

is less noisy when compared against the output from SV or GARCH type models. The absence

of excessive noise in the estimates facilitates a clearer understanding of underlying patterns and

2



trends. This smoother output not only aids in the identification of meaningful features but also

contributes to a more transparent and interpretable model.

The paper is structured as follows. Section 2 provides an introduction to the model, its associ-

ated parameters, likelihood (Section 2.1), priors (Section 2.2), and brief overview of the Gibbs sam-

pler (Section 2.3). The precise full conditional distributions for both in-sample and out-of-sample

forecast are both detailed in Appendix A. Subsequently, an analysis of the estimated volatility

by DSP-V is presented, comparing it with four commonly employed stochastic volatility mod-

els, namely the SV model, Markov Switching SV (MSSV), GARCH(1,1), and Markov Switching

GARCH (MSGARCH), in Section 3. In Section 4, DSP-V is applied to three empirical data

sets: weekly log-returns on S&P 500 index, weekly log-returns on EURO/USD exchange rate, and

weekly changes in death tolls from COVID-19. The estimated log-volatility by DSP-V and SV

are compared. Subsequent subsections delve into parameters from DSP-V: κt, µ,φ , which provide

additional information about the underlying process.

2 Model

The Dynamic Shrinkage Process (DSP) by Kowal et al. [2019] introduces a locally adaptive

Bayesian trend filter for modeling a time-varying process that exhibits both extended periods of

stability and periods of dynamic changes via a conditionally Gaussian State Space Model. For a

process {βt}, they define the DSP of order d(usually equal to 1 or 2) as:

∆dβt =






ωt ωt ∼ N(0, τ2λ2t ),

or

exp
{
vt
2

}
εt εt ∼ N(0, 1)

with

vt = µ+ ψt + ηt ηt
i.i.d∼ Z(a, b, 0, 1),

where Z-distribution has the following density function:

f(z|a, b, µz,σz) = (σzβ(a, b))
−1

(
exp

(
z − µz

σz

))a(
1 + exp

(
z − µz

σz

))−(a+b)

.

3



Equivalently, vt = log(τ2λ2t ), thus may be thought of as the log-variance process of βt. vt consists

of three parts. The global scale parameter µ represents the overall mean of the process. ψt + ηt,

on the other hand, represents the local-scale parameter. ψt models the temporal dependence of the

process. A few candidate models for ψt includes the Hidden Markov Models, linear regression, or

spline. For computational efficiency, order 1 Autoregression (AR1) with lag is considered. Thus,

ψt := φ(vt−µ). ηt corresponds to the i.i.d scale parameter, that dictates the shrinkage in the model.

For illustration, let’s consider the case ψt = µ = 0. Then, ωt
i.i.d∼ N(0, τλ2t ), where λt = exp(ηt2 ),

ηt ∼ Z(a, b, 0, 1), τ = 1. This is equivalent to imposing an inverted beta prior on λt. A few

notable priors exist with various values on a and b. The specific prior we focus on in this paper is

horseshoe prior Carvalho et al. [2010], by setting a = b = 1
2 . The benefit of having Z(12 ,

1
2 , 0, 1),

or more broadly Z-distribution as prior on ηt lies in its shrinkage properties. Given the shrinkage

parameter κt := 1
1+var(ωt|τ,λt)

= 1
1+exp(vt)

= 1
1+τ2λ2

t
, an effective shrinkage prior should concentrate

its values around 0 indicating minimal shrinkage and 1 indicating maximum shrinkage. As the

name suggests, the expected value of the posterior shrinkage parameter E(κt|y, τ) for horseshoe

prior induces ‘horseshoe’ or U shape on the shrinkage parameter, allocating most of its mass near

0 (minimal shrinkage) and 1 (maximal shrinkage). This advantage becomes particularly evident

when comparing it to ηt ∼ N(0,σ2η), where the density for κt, unlike the Z-distribution, approaches

0 as κt → 0 and κt → 1. Thus, DSP is proposed in Kowal et al. [2019] where

vt+1 = µ+ φ(vt − µ) + ηt ηt
i.i.d∼ Z(a, b, 0, 1).

We consider applying DSP model to explain changes in a stochastic volatility process. Let {yt} be

the mean 0 observations. The Dynamic Shrinkage Process in Volatility Model (DSP-V),

yt = σtεt = exp

{
ht
2

}
εt

i.i.d∼ N(0, 1) (1)

∆ht = ht − ht−1 = ωt ωt|vt ∼ N(0, evt) (2)

vt+1 = µ+ φ(vt − µ) + ηt ηt
i.i.d∼ Z(a, b, 0, 1). (3)

This is in context with the canonical first-order stochastic volatility SV(1) Model in which ht is

the first order autoregression and a constant innovation variance in volatility σ2, that is

ht+1 = µ+ φ(ht − µ) + ηt ηt
i.i.d∼ N(0,σ2η).

4



Compared to existing stochastic volatility models, DSP-V possesses two distinctive features. Pri-

marily, it exhibits smooth yet locally adaptive estimate of ht. Additionally, owing to locally adapted

error variance on ht, the credible region for ht also exhibits locally adaptive property. Specifically,

when substantial changes occur in ht, it displays a wider credible region. Conversely, in the presence

of little changes in ht, the credible region shrinks. Characteristics of DSP-V are further explored

and visualized using simulation data from several data generating processes as well as empirical

data sets in Section 3 and 4.

2.1 Likelihood

Likelihood for DSP-V is analogous to the one specified in Kim et al. [1998]. Let y∗t := log(y2t )

and define y∗1:t as (y∗1, y∗2, . . . , y∗t )′, with T being the total number of observation. Instead of working

directly with y, we will use the transformed data y∗ and specify its likelihood. We also have four

parameters h = (h1, . . . , ht)′,v = (v1, . . . , vt)′, µ, and φ. Without any simplification, we have the

following likelihood based on Bayes Theorem:

f(y∗|h,v, µ,φ) = f(y∗1|h1, v1, µ,φ)
T∏

t=2

f(y∗t |y∗1:t−1, h1:t, v1:t, µ,φ)

As shown in equation 2, y∗t only depends on the state variable ht. Therefore,

f(y∗|h,v, µ,φ) = f(y∗|h) =
T∏

t=1

f(y∗t |ht).

Instead of defining the likelihood on y directly, likelihood for y∗ is defined:

y∗t := log(y2t ) = ht + ε∗t ,

where ε∗t ∼ log(χ2
1). We use 10-component Gaussian mixture distribution proposed in Omori et al.

[2007] to approximate log(χ2
1) distribution. The likelihood on y∗ becomes:

f(y∗|h,v, µ,φ) = f(y∗|h) =
T∏

t=1

f(y∗t |ht) =
T∏

t=1

10∑

i=1

piN (y∗t |ht + µi,σi).

Clearly, the likelihood is Gaussian, conditional on the mixture component at time t, we call j =

(j1, j2, . . . , jT )′:

f(y∗t |ht, jt = k) = N (y∗t |ht + µk,σ
2
k)

jt
i.i.d∼ Categorical(p1, . . . , p10)
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Exact distribution for (jt, µjt ,σjt) may be found in Omori et al. [2007]. Thus the variable j is

introduced for efficient sampling. The likelihood on y∗ with the parameter expansion becomes:

f(y∗|h,v, µ,φ, j) = f(y∗|h, j) = N (y∗|h + µj , Iσj).

2.2 Priors

Figure 1: Graphical representations of Dynamic Shrinkage Process in Volatility (DSP-V) with
parameter expansions. In addition to the existing parameters, (h,v, µ,φ), parameters (j, s, ξ, ξµ)
are introduced for efficient Gibbs sampling.

In this section, priors on the parameters (h, v, µ,φ) are specified. For computational efficiency,

we consider ηt ∼ Z(12 ,
1
2 , 0, 1). As described in equation 2. The prior distribution for h depends on

v; v depends on µ and φ; and µ and φ are independent to all other variables. Thus, the priors on

(h,v, µ,φ) breaks up into four conditionally independent distributions:

f(h,v, µ,φ) = f(h|v, µ,φ)f(v|µ,φ)f(µ|φ)f(φ)

= f(h|v)f(v|µ,φ)f(µ)f(φ)

In addition to the exiting parameters, we also introduce four additional parameters j = (j1, . . . , jT )′,

s = (s1, . . . , sT )′, ξ = (ξ1, . . . , ξT )′, and ξµ. The graphical representation of DSP-V with parameter
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expansions is found in Figure 1. Specifically, ∀t

f(y∗t , jt|ht) =f(y∗t |ht, jt)f(jt)

f(ω∗
t , st|vt) = f(ω∗

t |vt, st)f(st) ω∗
t = log(ω2

t ) = log((ht − ht−1)
2)

f(vt, ξt|µ,φ) = f(vt|µ,φ, ξt)f(ξt)

f(µ, ξµ) = f(µ|ξµ)f(ξµ)

Thus, the parameter expanded priors maybe written as:

f(j,h,v, s, ξ, µ, ξµ,φ) = f(j)f(h|v, s)f(s)f(v|µ,φ, ξ)f(ξ)f(µ|ξµ)f(ξµ)f(φ).

In the following, we specify the exact distribution for each conditional prior distributions.

1. f(j) : Priors on j is given in Omori et al. [2007], where 10-component Gaussian mixture

distribution was used to approximate log(χ2
1).

2. f(h|v)f(ω∗|v, s) : Without any parameter expansion, ht depends on its previous ht−1 and

its log-variance term vt: ht+1|ht ∼ N(ht, evt). Also, we assume f(h1|v1) = N (h1|0, ev1).

Then, we have:

f(h|v) = N (h1|0, ev1)
T∏

t=2

N (ht|ht−1, e
vt)

Remember that ω∗ := log(ω2) = log(∆h2). Thus, f(ω|v) = N (0, Iev). Then,

ω∗
t |vt = vt + λ∗t λ∗t

i.i.d∼ log(χ2
1)

Using the same logic used for the parameter expansion for y∗, we get

f(ω∗|v, s) = N (ω∗|v + µs, Iσ
2
s),

and s follows the identical distribution as j detailed in Omori et al. [2007].

3. f(s) : As explored in the previous item, f(s) has the identical distribution to f(j).

4. f(v|µ,φ, ξ) : vt depends on its previous value vt−1, unconditional mean parameter µ, the

autoregressive parameter φ and the variance term ξt−1. As shown in Kowal et al. [2019],
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ηt ∼ Z(12 ,
1
2 , 0, 1) is a mean-variance mixture of Gaussian distribution with

f(ηt|ξt−1) = N (ηt|0,
1

ξt−1
)

f(ξt) = PG(ξt|1, 0)

where PG represents Polya-Gamma random variable. Then, the priors on v may be expressed

as:

f(v|µ,φ, ξ) = N (v1|µ,
1

ξ0
)

T∏

t=2

N (vt|µ+ φ(vt−1 − µ),
1

ξt−1
).

5. f(ξ) : As shown in item v, for t ∈ {0, . . . , T − 1}

f(ξt) = PG(ξt|1, 0)

6. f(µ|ξµ) : For µ we have m =
√
eµ ∼ C+( 1√

A
), where A = 1.

f(m) =
2
√
A

π(1 +Am2)
m ≥ 0

f(µ) =
2
√
A

π(1 +Aeµ)

∣∣∣∣
d

dµ

√
eµ
∣∣∣∣ =

√
Aeµ

π(1 +Aex)
=

√
eµ−(− log(A))

π
(
1 + eµ−(− log(A))

) µ ∈ (−∞,∞)

= Z(µ|1
2
,
1

2
,−log(A), 1) = Z(µ|1

2
,
1

2
, 0, 1).

Using the same logic used in item f(v|µ,φ, ξ), we have

f(µ|ξµ) = N (µ|0, 1

ξµ
)

f(ξµ) = PG(ξµ|1, 0)

7. f(ξµ) : The parameter ξµ was introduced to expand the parameter µ, which follows a half-

Cauchy distribution. As shown in item f(µ|ξµ),

f(ξµ) = PG(ξµ|1, 0).

8. f(φ) : Let b = φ+1
2 .

f

(
φ+ 1

2

)
= f(b) = Beta(b|10, 2).
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2.3 Gibbs Sampling

Building upon the Gibbs sampler proposed in Kowal et al. [2019], we propose Gibbs sampler

for DSP-V. It uses log variance sampling by Kastner and Frühwirth-Schnatter [2014] with Polya-

Gamma sampler by Polson et al. [2013], and a Cholesky factorization algorithm by Rue [2001] for

efficient sampling of the state variable ht. In addition, 10-component Gaussian mixture distribution

by Omori et al. [2007] for approximating log(χ2
1) distribution was used. Graphical representation

DSP-V with parameter expansion is illustrated in Figure 1. The prior distribution is explored in

section 2.2. Define θ1:T = (j,h,v, s, ξ, µ, ξµ,φ) and θ1:T−j = (h,v, s, ξ, µ, ξµ,φ). Similarly, define θ1:T−h

and so forth in a similar manner. The following is the list of conditional distributions for Gibbs

sampling. Despite large number of parameters, many of the variables are conditionally independent.

f(j|θ1:T−j , y
∗) = f(j|h, y∗) (A.1)

f(h|θ1:T−h , y
∗) = f(h|j,v, s, y∗) (A.2)

f(v|θ1:T−v , y
∗) = f(v|s,h, µ,φ, ξ) (A.3)

f(s|θ1:T−s , y
∗) = f(s|h,v) (A.4)

f(ξ|θ1:T−ξ , y
∗) = f(ξ|v, µ,φ) (A.5)

f(µ|θ1:T−µ , y
∗) = f(µ|v, ξ, ξµ,φ) (A.6)

f(ξµ|θ1:T−ξµ , y
∗) = f(ξµ|µ) (A.7)

f(φ|θ1:T−φ , y
∗) = f(φ|v, ξ, µ) (A.8)

In order to obtain samples from the posterior distribution f(θ1:T |y∗), we first initialize each param-

eters appropriately. Then we sequentially sample each parameter from 8 conditional distributions

above. Once the distributions are converged, samples generated from the distributions below are

equivalent to the samples from the desired posterior distribution. Other than φ, the closed form

full conditional distribution is derived in Appendix A. We use slice sampling by Neal [2003] for

sampling φ.

2.4 Forecast

Only a couple minor changes on the Gibbs sampler in Section 2.3 are required to perform

forecasting. Let’s consider m-step ahead forecast. The subscript notation is used to denote time
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index. Our goal is to sample from the joint posterior predictive distribution:

f(y∗T+1:T+m, θT+1:T+m|y∗1:T ) =
∫

f(y∗T+1:T+m, θT+1:T+m|θ1:T , y∗1:T )f(θ1:T |y∗1:T )dθ1:T

=

∫
f(y∗T+1:T+m, θθ

1:T+mT+m|y∗1:T )dθ1:T

which is equivalent to sampling from the joint distribution.

f(y∗T+1:T+m, θ1:T+m|y∗1:T ).

Let’s reminder ourselves that the distribution for y∗t is completely determined by ht and jt ∀t as

shown in (Figure 1). Using Bayes Theorem, we get:

f(y∗T+1:T+m, θ1:T+m|y∗1:T ) = f(y∗T+1:T+m|θ1:T+m, y∗1:T )f(θ
1:T+m|y∗1:T )

= f(y∗T+1:T+m|jT+1:T+m, hT+1:T+m)f(θ1:T+m|y∗1:T )

Thus, we have two independent distributions to sample from: 1) f(y∗T+1:T+m|jT+1:T+m, hT+1:T+m)

and f(θ1:T+m|y∗1:T ). As explored in section 2.1, ∀t, ∀k ∈ {1, . . . , 10}, f(y∗t |jt = k, ht) = N (y∗t |ht +

µk,σ2k), which can be easily sampled once jt and ht are sampled. Now let’s direct our atten-

tion for Gibbs sampling, f(θ1:T+m|y∗1:T ). Let’s remind ourselves that other than the variable h

and j, variables don’t depend on y∗1:T . Therefore, the full conditional distribution for variables

h1:T+m, v1:T+m, s1:T+m and ξ1:T+m are identical to the ones discussed in Section 2.3, which are

further detailed in Appendix A. The full conditional distribution for h1:T+m and j1:T+m are also

explored in Appendix B.

3 Simulation Study

3.1 Set-up

The goal of the simulation study was to compare proposed Dynamic Shrinkage Process in

Volatility (DSP-V) against widely used volatility models including 1) Stochastic Volatility model

(SV), 2) Markov-Switching Stochastic Volatility model (MSSV), 3) Generalized Autoregressive

Conditional Heteroskedasticity (GARCH) and 4) Markov-Switching GARCH (MSGARCH). 100

sample paths were generated under these four data generating schemes with each path consisting

of 400 data points. Given yt = σtεt, εt i.i.d∼ N(0, 1),ηt i.i.d∼ N(0, 1), ht := log(σ2t ), we have the
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following data generating schemes.

1. Scheme 1 (Stochastic Volatility Model):

ht+1 = −2 + 0.9(ht + 2) + 0.2ηt

2. Scheme 2 (Markov Switching Stochastic Volatility Model):

ht+1 = µst+1 + 0.5(ht−1 − µst) + 2ηt

µst = −10 + 13st, st ∈ {0, 1}

P (st+1 = j|st = i) = pij

3. Scheme 3 (GARCH model):

σ2t+1 = 1 + 0.1y2t + 0.5σ2t

4. Scheme 4 (Markov Switching GARCH model):

σ2t+1 = ωst+1 + 0.2y2t + 0.2σ2t

ωst = 1 + 99st, st ∈ {0, 1}

P (st+1 = j|st = i) = pij

Transitions between states 0 and 1 for simulation schemes 2 and 4 were governed by the following

transition matrix P =
(
0.95 0.05
0.05 0.95

)
. Performances of each model were evaluated in terms of their

in-sample mean absolute deviation in ht := log(σ2t ) for Schemes 1 and 2 and σt for Schemes 3

and 4. Indeed, SV, MSSV, GARCH, and MSGARCH would perform the best respectively for

simulation schemes 1 through 4, as they represent the true models in those scenarios. Our aim is to

compare the performance of DSP-V against the true data generating process and other alternative

models in a variety of data generating schemes. In order to have concise comparisons, DSP-V

were compared against SV and MSSV model under scheme 1 and 2, and against GARCH and

MSGARCH under scheme 3 and 4. All four models were implemented in R language (R Core

Team [2013]). Specifically, Bayesian Stochastic Volatility model (SV model) was implemented via

stochvol (Kastner [2016]) package, Markov Switching Stochastic Volatility model as described in

Hamilton [1989] were implemented by the authors as no readily available packages in R exists,
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Scheme 1 Scheme 2 Scheme 3 Scheme 4
SV 0.2972 1.2894 GARCH 0.0693 3.5276
MSSV 0.4337 0.9706 MSGARCH 0.0755 2.6064
DSP-V 0.3078 1.0427 DSP-V 0.1191 3.0278

Table 1: Average Mean Absolute Errors (MAE) over 100 sample paths with either the volatility σ or
log-squared volatility h as a target are compared between Dynamic Shrinkage Process in Volatility
(DSP-V) and four other models, including Stochastic Volatility (SV), Markov Switching Stochastic
Volatility (MSSV), Generalized AutoRegressive Conditional Heteroskedasticity (GARCH(1,1) and
Markov-Switching GARCH (MSGARCH).

GARCH(1,1) models were fitted via fGarch (Wuertz et al. [2023]) package, and Markov Switching

GARCH (MSGARCH) models were fitted via MSGARCH (Ardia et al. [2019]) package. For each

model, 5000 samples were generated with 5000 burn-in samples.

3.2 Result

Figure 2 illustrates the Mean Absolute Error (MAE) distribution across four simulation schemes,

and Table 1 provides the average MAE for the models under examination. Sample paths for

simulation schemes 1 and 2 were generated from SV models, featuring 1 and 2 regimes, respectively.

In contrast, sample paths for simulation schemes 3 and 4 were generated using GARCH models,

each with 1 and 2 regimes. As anticipated, the true model, SV, MSSV, GARCH, and MSGARCH,

had the lowest MAE in simulation scheme 1 through 4 respectively.

Our proposed method, DSP-V closely followed the true model with average MAE of 0.3078

for Scheme 1 and 1.0427 for Scheme 2. It is important to note that the performance of DSP-V

is comparable to the true model, which had the average MAE of 0.2972 for Scheme 1 and 0.9706

for scheme 2. The alternative models, MSSV for Scheme 1 and SV for Scheme 2, had significantly

higher average MAE of 0.4337 and 1.2894 respectively. The overall distributions of MAE are

depicted in Figure 2a and 2b. The findings indicate that DSP-V is a versatile framework, adept

at approximating SV models with varying numbers of regime changes, without the need for prior

knowledge regarding the number of regimes. This stands in contrast to Markov-switching models,

which demand that users specify the number of structural breaks in the sample before modeling.

Given the common uncertainty surrounding the number of structural breaks in the sample in

empirical analyses, DSP-V holds a clear advantage over MSSV in this regard.

DSP-V, nevertheless, performed less favorably than GARCH and MSGARCH (Figure 2c) in
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(a) Scheme 1 (h) (b) Scheme 2 (h)

(c) Scheme 3 (σ) (d) Scheme 4 (σ)

Figure 2: Box plots of Mean Absolute Error (MAE) across 100 sample paths measured in h for
scheme 1 and 2, and σ for scheme 3 and 4. Stochastic Volatility (SV), Markov-Switching Stochastic
Volatility (MSSV), and Dynamic Shrinkage Process in Volatility (DSP-V) were compared in scheme
1 and 2. Generalized AutoRegressive Conditional Heteroskedasticity (GARCH(1,1)), Markov-
Switching GARCH (MSGARCH), and DSP-V were compared in scheme 3 and 4.

Scheme 3, in which the data were generated from GARCH(1,1) model. As explored in Section 2,

DSP-V closely resembles the SV model, as it directly models the log-volatility term ht instead of

σt. Thus, this discrepancy may introduce model-misspecification bias resulting in high MAE for

DSP-V when compared against GARCH and MSGARCH. Despite the model misspecification bias,

DSP-V was still able to perform comparably in simulation scheme 4 (Figure 2d). The average MAE

for the true model MSSV, is 2.6064, followed by DSP-V and GARCH with the average MAE of

3.0278 and 3.5276, respectively. Despite model misspecification bias, DSP-V overall outperforms

GARCH(1,1) when large regime changes occur in the sample path.

The simulation result underscores the versatility of DSP-V as a robust framework for modeling

stochastic volatility, especially in the presence of extreme regime switches. The significance of DSP-

V lies in its ability to produce reliable results across diverse data generating processes, a crucial
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aspect considering that, in empirical analysis, the true data generating process is often unknown.

Consequently, DSP-V stands out by providing results that, while not optimal, are still comparable,

all without requiring knowledge of the actual data generating process. Regime-switching models

such as MSSV and MSGARCH model both require that we know the number of regimes prior to

the analysis. And when the number of regimes are misspecified, bias is introduced. On the other

hand, DSP-V, with its locally adaptive DSP, can learn regime switching from the data. Through a

series of simulation studies, we demonstrate that DSP-V is a flexible framework that outperforms

widely used models such as SV, MSSV, GARCH, and MSGARCH across diverse data generating

schemes.

4 Empirical Study

4.1 Set-up

In this section, we applied DSP-V to analyze empirical data. Specifically, we looked at the price

of S&P500 from 2012-01-01 to 2021-12-31 (n = 1148, Figure 3a), EURO to US Dollar exchange

rate between 2000-01-03 to 2012-04-04 (n = 639, Figure 3c), and new deaths from COVID-19 from

2020-01-03 to 2023-11-13 (n = 202, Figure 3e). DSP-V, were then, applied to the weekly log return

series for S&P 500 and EURO/USD exchange (Figure 3b and Figure 3d), and the weekly first

difference series for global COVID-19 death tolls (Figure 3f). We first compared the estimated

log-volatility (h) derived from DSP-V against the one generated from the SV model. Subsequently,

a more detailed examination of DSP parameters such as κt (the shrinkage parameter for ht), µ,

and φ is performed.

4.2 Results

4.2.1 Log-Volatility (h)

In this analysis, we assess the log-volatility (h) estimates generated by DSP-V and SV models

across three data sets. Figure 4 illustrates the estimated h based on DSP-V and SV. Focusing

on the S&P 500 dataset, the most prominent feature of the series in both SV and SVSDP are

the large spikes in 2009 and 2020 due to financial crisis and COVID-19 outbreaks. In terms of
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(a) S&P500 Index (b) Weekly Log Return on S&P500 Index

(c) EURO/USD Exchange Rate (d) Weekly Log Return on Exchange Rate

(e) Global COVID-19 Deaths (f) First Difference COVID Deaths

Figure 3: Price and log weekly return of S&P500 between 2012-01-01 and 2021-12-31, EURO/USD
exchange rate and its log weekly return between 2000-01-03 and 2012-04-04, and weekly global
COVID-19 death tolls and its weekly changes between 2020-01-03 to 2023-11-13 are illustrated
from (a) to (f), respectively.

moderate changes, the one around 2001 coincides with 9/11 attack and the 2011 surge aligns with

the European Debt crisis, both of which caused a stock market decline. The stock market in
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(a) S&P 500 Index (DSP-V) (b) S&P 500 Index (SV)

(c) EURO/USD Exchange Rate (DSP-V) (d) EURO/USD Exchange Rate (SV)

(e) COVID-19 Deaths (DSP-V) (f) COVID-19 Deaths (SV)

Figure 4: Estimated h with 90% quantile-based credible regions on weekly returns on S&P 500
between 2000-01-01 and 2021-12-31, weekly returns on EURO/USD exchange rate between 2000-
01-03 and 2012-04-04, and weekly changes in Global COVID-19 death tolls between 2020-01-03 and
2023-11-13 based on Dynamic Shrinkage Process in Volatility (DSP-V) shown in (a),(c), and (e)
and based on Stochastic Volatility (SV) model shown in (b),(e), and (f).
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2018 followed the strongest 2017 market since the financial crisis but was overall exhibited extreme

volatility. The S&P 500 index closed at approximately 2930 in September but plummeting 19.73%

to 2351 by Christmas Eve in 2018. While discernible in DSP-V, small to moderate changes in

volatility is hard to distinguish from noise in SV’s noisier estimates.

The EURO/USD exchange rate’s most notable volatility pattern includes a steady decline from

2001 to 2008, a substantial spike in 2008 and 2009 due to the financial crisis, and a minor bump in

2010 and 2011, likely tied to the European Debt crisis as well. Figure 3c suggests a steady increase

in the EURO/USD exchange rate between 2001 and 2008, resulting in low volatility. Both DSP-V

and SV outputs exhibit a very similar pattern, with DSP-V displaying a smoother output. Because

of this, The steady decline in volatility from 2001 to 2007 is easier to notice from DSP-V than from

SV.

A discernible pattern from both SV and DSP-V for COVID-19 death tolls is the significant

volatility spike occurring around the onset of the pandemic in early 2020 and another one in early

2023. Subsequently, seasonal effect appears to be present; there are small to large increases in

volatility at the end and beginning of each year, followed by reductions in the summer months,

particularly noticeable in 2022 and 2023. In mid-2022, a substantial dip in volatility is observed,

succeeded by a notable spike toward the end of 2022 and the beginning of 2023. By the mid-

2023, volatility plateaus, and experience dramatic decline, only to exhibit another spike by the

end of 2023. This pattern is also observed to a lesser extent in 2020 and 2021, according to DSP-

V estimates. Due to noisier output from SV model, on the other hand, such pattern becomes

less noticeable. The seasonal cycle aligns with the winter wave of COVID-19, suggesting a higher

likelihood of contracting the virus in winter months in the Northern Hemisphere. Despite the

data being global death tolls, the observed seasonal pattern corresponds to that of the Northern

Hemisphere, where approximately 90% of the global population resides. The seasonal effect of the

Northern Hemisphere’s population outweighs that of the Southern Hemisphere.

Thus, both DSP-V (Figure 4a, 4c, and 4e) and SV (Figure 4b, 4d, and 4f) produce similar

overall pattern of h. The primary distinction between the two models, however, lies in the degree

of smoothness; the proposed model, DSP-V, produces a notably smooth output when compared

against the output from SV model. A key advantage of this enhanced smoothness is improved

interpretability. As discussed earlier, DSP-V excels, particularly in discerning small to medium
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changes in volatility, offering better clarity in distinguishing signal from noise compared to SV,

whose outputs tend to be noisier, rendering signals often indistinguishable from the noise. The re-

duced noise in DSP-V’s output enables users to gain a clearer understanding of underlying patterns

and trends.

(a) S&P 500 Index (b) EURO/USD Exchange Rate

(c) COVID-19 Deaths

Figure 5: From the 90% quantile-based credible regions the expected ht were subtracted to allow
comparisons of the credible regions in terms of their width. The three datasets include weekly
returns on S&P 500 between 2000-01-01 and 2021-12-31, weekly returns on EURO/USD exchange
rate between 2000-01-03 and 2012-04-04, and weekly changes in Global COVID-19 death tolls
between 2020-01-03 and 2023-11-13. The centered credible regions for Dynamic Shrinkage Process
in Volatility (DSP-V) are drawn in black and the ones based on Stochastic Volatility (SV) model
are in grey.

Another distinguishing feature of DSP-V is its credible region. Due to time-varying variance

term vt, credible region around ht produced by DSP-V also changes over time. The mean-centered

credible regions generated by SV and DSP-V on the three data sets are presented in Figure 5.

Notably, the credible regions maintain a constant width for the SV model across the sample path.

The credible region around h for DSP-V, on the other hand, exhibits local adaptability. Specifically,

the patterns on the centered credible regions match that of ht explored in previous paragraphs.
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When changes in ht are slow moving, the width of the credible region is narrow; while abrupt

changes in ht induce large credible regions.

4.2.2 Shrinkage Parameter κt

(a) S&P 500 Index (b) EURO/USD Exchange Rate

(c) COVID-19 Deaths

Figure 6: Comparison between the expected shrinkage parameter κt := 1
1+var(ωt|τ,λt)

= 1
1+exp(vt)

=
1

1+τ2λ2
t

and expected ht based on Dynamic Shrinkage Process in Volatility (DSP-V) estimated on
weekly returns on S&P 500 between 2000-01-01 and 2021-12-31, weekly returns on EURO/USD
exchange rate between 2000-01-03 and 2012-04-04, and weekly changes in Global COVID-19 death
tolls between 2020-01-03 and 2023-11-13, respectively. The dotted lines represent the one-sided
95th and centered 90th percentile credible regions for κt and ht respectively.e

As specified in section 2, the parameter vt is the log-variance term for the first difference of ht.

Thus, a small vt corresponds to minor changes in ht, while a large vt signifies substantial variations

in ht. Alternatively, one can conceptualize vt as influencing the degree of shrinkage applied to ht,
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S&P 500 EURO/USD COVID Deaths
Estimate 90% CR Estimate 90% CR Estimate 90% CR

µ -7.508 (-8.413,-6.783) -10.03 (-11.85,-8.357) -3.186 (-4.615,-1.916)
φ 0.352 (-0.093,0.5907 0.450 (0.125, 0.680) 0.580 (0.246,0.769)

Table 2: Expected value and 90% quantile based credible region for parameters µ and φ parameters
from Dynamic Shrinkage Process in Volatility (DSP-V) estimated for weekly returns on S&P 500
between 2000-01-01 and 2021-12-31, weekly returns on EURO/USD exchange rate between 2000-
01-03 and 2012-04-04, and weekly changes in Global COVID19 death tolls between 2020-01-03 and
2023-11-13.

denoted as κt := 1
1+var(ωt|τ,λt)

= 1
1+exp(vt) = 1

1+τ2λ2
t
. Analyzing κt rather than vt is preferred for

clarity, as κt ∈ (0, 1), unlike vt ∈ (−∞,+∞). A high κt (near 1) signals strong model certainty,

while a low value (near 0) indicates less certainty in the estimate. The comparison between the

estimated log-volatility ht and the shrinkage parameter κt are depicted in Figure 6. In line with

our understanding of DSP-V, prominent peaks in ht align with values near 0 in κt. During periods

of gradual evolution, on the other hand, κt is close to 1. In general, the κt for COVID-19 deaths

data is comparatively more volatile than that observed for the S&P 500 and exchange rate data,

indicating a lower level of certainty in the model’s estimates. This discrepancy could be attributed

to the limited sample size of the COVID-19 dataset, which comprises only of 203 data points. In

contrast, the S&P 500 and exchange rate datasets contain 1148 and 639 data points, respectively.

4.2.3 Dynamic Shrinkage Process Parameters

The dynamics of vt, the time-varying variance term for ht, are governed by an AR(1) process

with a slightly different error term, ηt ∼ Z(a, b, 0, 1), to induce adequate shrinkage. For all three

data sets, Z(12 ,
1
2 , 0, 1) was used. The term µ represents the global parameter for vt; it represents

the overall level of changes occurring in ht with the large value signifying large changes ht in sample

and vice versa. The expected value and the 90% credible regions for µ and φ across the three data

sets are summarized in Table 2. The data set with largest µ were COVID-19 data set with the

expected value of −3.186, followed by S&P 500 and the exchange rate data. As illustrated in

Figure 4e, ht ranges between -25 to -5, whereas the range of ht for the other two data sets are much

smaller.

The parameter φ represents the autoregressive strength, indicating the dependence between

successive vt values. In all three cases, φ > 0. This observation suggests that large changes in ht

20



are likely followed by subsequent large changes. Notably, COVID-19 data exhibited the highest

expected φ at 0.58, followed by 0.434 for the exchange rate and 0.352 for S&P 500 data. The

higher φ parameter in COVID-19 data is in accordance with the inherent dynamics of infectious

diseases, where notable surges or declines often signal underlying regime changes. For example, a

substantial surge in cases can catalyze additional infections leading to an exponential growth pattern

in COVID-19 cases. Conversely, a significant decrease in COVID-19 deaths might be associated

with seasonal effects or vaccination efforts, influencing the overall trajectory of the disease in the

opposite direction. In contrast, economic downturns such as financial crisis in 2009 or COVID-19

outbreak induce structural changes in which large volatility is generally observed. However, not all

substantial changes in financial market volatility may be solely ascribed to such regime changes.

Some fluctuations may stem from the intrinsic unpredictability inherent in financial markets.

5 Conclusion

In this paper, we introduced a novel Dynamic Shrinkage Process in Volatility (DSP-V) as a

flexible and adaptive framework for modeling stochastic volatility in financial data. The key inno-

vation lies in the incorporation of a global-local prior called Dynamic Shrinkage Process, allowing

DSP-V to dynamically adapt to evolving processes. Through an extensive simulation study, we

demonstrated that DSP-V consistently outperforms or yields comparable results to established

models such as Stochastic Volatility (SV), Markov Switching Stochastic Volatility, GARCH(1,1),

and Markov Switching GARCH, across diverse data generating scenarios. Notably, DSP-V ex-

hibited resilience to model mispecification biases, showcasing its robustness in financial modeling.

When compared against estimated volatility from other existing models, DSP-V distinguishes it-

self from others by producing smooth, yet locally adaptive output. To this end, DSP-V emerges

as a powerful tool for capturing the complexities of stochastic volatility in financial data. Future

research could explore additional applications of DSP-V in various financial contexts and extend

its capabilities to handle high-frequency data and other complex financial phenomena.

21



References
David Ardia, Keven Bluteau, Kris Boudt, Leopoldo Catania, and Denis-Alexandre Trottier.

Markov-switching garch models in r: The msgarch package. Journal of Statistical Software,
91(4):1–38, 2019. doi: 10.18637/jss.v091.i04.

Luc Bauwens, Arie Preminger, and Jeroen V. K. Rombouts. Theory and inference for a markov
switching garch model. The Econometrics Journal, 13(2):218–244, 2010. ISSN 13684221,
1368423X. URL http://www.jstor.org/stable/23117467.

Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of
Political Economy, 81(3):637–654, 1973. ISSN 00223808, 1537534X. URL http://www.jstor.
org/stable/1831029.

Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics,
31(3):307–327, 1986. ISSN 0304-4076. doi: https://doi.org/10.1016/0304-4076(86)90063-1. URL
https://www.sciencedirect.com/science/article/pii/0304407686900631.

Jun Cai. A markov model of switching-regime arch. Journal of Business & Economic Statistics,
12(3):309–316, 1994. ISSN 07350015. URL http://www.jstor.org/stable/1392087.

CARLOS M. Carvalho, NICHOLAS G. POLSON, and JAMES G. SCOTT. The horseshoe es-
timator for sparse signals. Biometrika, 97(2):465–480, 2010. ISSN 00063444, 14643510. URL
http://www.jstor.org/stable/25734098.

Ray Yeutien Chou. Volatility persistence and stock valuations: Some empirical evidence using
garch. Journal of Applied Econometrics, 3(4):279–294, 1988. ISSN 08837252, 10991255. URL
http://www.jstor.org/stable/2096644.

Francis X. Dieobold. Modeling the persistence of conditional variances: A comment. Econometric
Reviews, 5(1):51–56, 1986. doi: 10.1080/07474938608800096. URL https://doi.org/10.1080/
07474938608800096.

Robert F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of
united kingdom inflation. Econometrica, 50(4):987–1007, 1982. ISSN 00129682, 14680262. URL
http://www.jstor.org/stable/1912773.

Kenneth French, G. Schwert, and Robert Stambaugh. Expected stock returns and volatility. Journal
of Financial Economics, 19(1):3–29, 1987. URL https://EconPapers.repec.org/RePEc:eee:
jfinec:v:19:y:1987:i:1:p:3-29.

Stephen F. Gray. Modeling the conditional distribution of interest rates as a regime-switching
process. Journal of Financial Economics, 42(1):27–62, September 1996. URL https://ideas.
repec.org/a/eee/jfinec/v42y1996i1p27-62.html.

James D. Hamilton. A new approach to the economic analysis of nonstationary time series and
the business cycle. Econometrica, 57(2):357–384, 1989. ISSN 00129682, 14680262. URL http:
//www.jstor.org/stable/1912559.

James D Hamilton and Raul Susmel. Autoregressive conditional heteroskedasticity and changes in
regime. Journal of Econometrics, 64(1):307–333, 1994. ISSN 0304-4076. doi: https://doi.org/10.
1016/0304-4076(94)90067-1. URL https://www.sciencedirect.com/science/article/pii/
0304407694900671.

JOHN Hull and ALAN White. The pricing of options on assets with stochastic volatilities. The
Journal of Finance, 42(2):281–300, 1987. doi: https://doi.org/10.1111/j.1540-6261.1987.tb02568.
x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1987.tb02568.
x.

Soosung Hwang, Steve E. Satchell, and Pedro L. Valls Pereira. How Persistent is Volatility? An An-
swer with Stochastic Volatility Models with Markov Regime Switching State Equations. Econo-
metric Society 2004 Latin American Meetings 198, Econometric Society, August 2004. URL
https://ideas.repec.org/p/ecm/latm04/198.html.

22



Gregor Kastner. Dealing with stochastic volatility in time series using the R package stochvol.
Journal of Statistical Software, 69(5):1–30, 2016. doi: 10.18637/jss.v069.i05.

Gregor Kastner and Sylvia Frühwirth-Schnatter. Ancillarity-sufficiency interweaving strategy
(ASIS) for boosting MCMC estimation of stochastic volatility models. Computational Statis-
tics & Data Analysis, 76:408–423, aug 2014. doi: 10.1016/j.csda.2013.01.002. URL https:
//doi.org/10.1016%2Fj.csda.2013.01.002.

Sangjoon Kim, Neil Shephard, and Siddhartha Chib. Stochastic volatility: Likelihood inference
and comparison with arch models. The Review of Economic Studies, 65(3):361–393, 1998. ISSN
00346527, 1467937X. URL http://www.jstor.org/stable/2566931.

Daniel R. Kowal, David S. Matteson, and David Ruppert. Dynamic Shrinkage Processes. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 81(4):781–804, 05 2019. ISSN
1369-7412. doi: 10.1111/rssb.12325. URL https://doi.org/10.1111/rssb.12325.

Christopher G Lamoureux and William Lastrapes. Heteroskedasticity in stock return data: Volume
versus garch effects. Journal of Finance, 45(1):221–29, 1990. URL https://EconPapers.repec.
org/RePEc:bla:jfinan:v:45:y:1990:i:1:p:221-29.

Angelo Melino and Stuart M. Turnbull. Pricing foreign currency options with stochastic volatility.
Journal of Econometrics, 45(1-2):239–265, 1990. URL https://EconPapers.repec.org/RePEc:
eee:econom:v:45:y:1990:i:1-2:p:239-265.

Robert C. Merton. Lifetime portfolio selection under uncertainty: The continuous-time case. The
Review of Economics and Statistics, 51(3):247–257, 1969. ISSN 00346535, 15309142. URL
http://www.jstor.org/stable/1926560.

Philip Messow and Walter Krämer. Spurious persistence in stochastic volatility. Economics Letters,
121(2):221–223, 2013. ISSN 0165-1765. doi: https://doi.org/10.1016/j.econlet.2013.08.008. URL
https://www.sciencedirect.com/science/article/pii/S0165176513003704.

Thomas Mikosch and Cătălin Stărică. Nonstationarities in financial time series, the long-range
dependence, and the igarch effects. The Review of Economics and Statistics, 86(1):378–390,
2004. ISSN 00346535, 15309142. URL http://www.jstor.org/stable/3211680.

Radford M. Neal. Slice sampling. The Annals of Statistics, 31(3):705 – 767, 2003. doi: 10.1214/
aos/1056562461. URL https://doi.org/10.1214/aos/1056562461.

Yasuhiro Omori, Siddhartha Chib, Neil Shephard, and Jouchi Nakajima. Stochastic volatility
with leverage: Fast and efficient likelihood inference. Journal of Econometrics, 140(2):425–
449, 2007. ISSN 0304-4076. doi: https://doi.org/10.1016/j.jeconom.2006.07.008. URL https:
//www.sciencedirect.com/science/article/pii/S0304407606001436.

Nicholas G. Polson, James G. Scott, and Jesse Windle. Bayesian inference for logistic models using
polya-gamma latent variables, 2013.

Ser-Huang Poon and Stephen J. Taylor. Stock returns and volatility: An empirical study of
the uk stock market. Journal of Banking & Finance, 16(1):37–59, 1992. ISSN 0378-4266.
doi: https://doi.org/10.1016/0378-4266(92)90077-D. URL https://www.sciencedirect.com/
science/article/pii/037842669290077D. Special Issue on European Capital Markets.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2013. URL http://www.R-project.org/.

Havard Rue. Fast sampling of gaussian markov random fields. Journal of the Royal Statistical
Society. Series B (Statistical Methodology), 63(2):325–338, 2001. ISSN 13697412, 14679868.
URL http://www.jstor.org/stable/2680602.

Mike K. P. So, K. Lam, and W. K. Li. A stochastic volatility model with markov switching.
Journal of Business & Economic Statistics, 16(2):244–253, 1998. ISSN 07350015. URL http:
//www.jstor.org/stable/1392580.

23



Mike K.P. So, K. Lam, and W.K. Li. An Empirical Study of Volatility in Seven Southeast Asian
Stock Markets Using ARV Models. Journal of Business Finance & Accounting, 24(2):261–276,
March 1997. doi: 10.1111/1468-5957.00104. URL https://ideas.repec.org/a/bla/jbfnac/
v24y1997i2p261-276.html.

Fei Su and Lei Wang. Conditional volatility persistence and realized volatility asymmetry: Evi-
dence from the chinese stock markets. Emerging Markets Finance and Trade, 56(14):3252–3269,
2020. doi: 10.1080/1540496X.2019.1574566. URL https://doi.org/10.1080/1540496X.2019.
1574566.

S.J. Taylor. Modelling Financial Time Series. G - Reference,Information and Interdisciplinary
Subjects Series. World Scientific, 2008. ISBN 9789812770844. URL https://books.google.
com/books?id=KQ5pDQAAQBAJ.

Diethelm Wuertz, Yohan Chalabi, Tobias Setz, Martin Maechler, and Georgi N. Boshnakov. fGarch:
Rmetrics - Autoregressive Conditional Heteroskedastic Modelling, 2023. URL https://www.
rmetrics.org. R package version 4031.90.

24



A Full Conditional Distributions for Gibbs Sampling

In the following subsections, we will derive the conditional posterior for each parameter:
(j,h,v, s, ξ, µ, ξµ,φ).

A.1 j

j = (j1, . . . , jT ) was introduced to expand the likelihood on y∗. In this section, we show that
∀k ∈ {1, . . . , 10}:

p(jt = k|ht, vt, st, ξt, µt, ξµ,φ, y
∗
t ) = p(jt = k|ht, y∗t )

=
N (y∗t |ht + µk,σ2k)pk∑10
i=1 piN (y∗t |ht + µi,σ2i )

, ∀t ∈ {1, . . . , T}

j is only associated with y∗, which is only associated with h and j:

p(jt = k|ht, vt, st, ξt, µt, ξµ,φ, y
∗
t ) = p(jt = k|ht, y∗t ) =

f(y∗t |ht, jt)p(jt = k)∫
f(y∗t |h, jt)f(jt)djt

As described in Section 2.1, parameter j = (j1, . . . , jT )′ is introduced, where ∀t

f(y∗t |jt, ht) = N (y∗t |ht + µjt ,σ
2
jt)

Naturally, ∀k ∈ {1, . . . , 10}

p(jt = k|ht, y∗t ) =
f(y∗t |ht, jt = k)p(jt = k)

f(y∗t |ht)

=
f(y∗t |ht, jt = k)p(jt = k)

∑10
i=1 p(jt = i)f(y∗t |ht, jt = i)

=
N (y∗t |ht + µk,σ2k)pk∑10
i=1 piN (y∗t |ht + µi,σ2i )

, ∀t ∈ {1, . . . , T},

which is what we wanted to show. Exact distribution on jt
i.i.d∼ Categorical(p1, . . . , p10) as well as

corresponding mean and the variance parameter of each component is described in Section 2.2.

A.2 h

In this section, we derive the conditional distribution the state variable h:

f(h|j, v, y∗) = N
(

h
∣∣∣∣

(
Qv + I

1

σ2j

)−1 y − µj

σ2j
,

(
Qv + I

1

σ2j

)−1)
,
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where Qv is a symmetric tridiagonal matrix defined below. Based on section 2.2,

f(y∗|j,h) =
T∏

t=1

N (y∗t |ht + µjt ,σ
2
jt) = N (y∗|h+ µj , Iσ

2
j )

f(h|v) = N (h1|0, ev1)
T∏

t=1

N (ht|ht−1, e
vt)

We derive conditional joint prior on h|v like we did for f(y∗|h, j). Based on section 2:

∆h|v =





h1|v1
h2 − h1|v2

...
hT − hT−1|vt




∼ N

(





0

0
...
0




,





ev1

ev2

. . .
evt





)

Indeed,

h|v ∼





1 0

1 1

1 1
. . .

... ... . . . . . .
1 1 . . . . . . 1





∆h|v ∼ N(0, Q−1
v )

where

Q−1
v =





1 0

1 1

1 1
. . .

... ... . . . . . .
1 1 . . . . . . 1









ev1 . . . . . . 0
... ev2

...
... . . . ...
0 . . . . . . evt









1 1 1 . . . 1

1 1 . . . 1
. . . . . . ...

. . . ...
0 1





And Qv is a band matrix

Qv =





(
1

ev2 − 1
ev1

)
− 1

ev2 0 . . . . . . 0

− 1
ev2

(
1

ev3 − 1
ev2

)
− 1

ev3
. . . . . . ...

0 − 1
ev3

(
1

ev4 − 1
ev3

)
− 1

ev4
. . . . . .

... . . . . . . . . . . . . 0

... . . . . . . − 1
evT−1

(
1

evT−1 − 1
evT

)
− 1

evT

0 . . . . . . 0 − 1
evT

1
evT
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We have f(h|v) = N (h|0, Q−1
v ). Thus, we may conclude that.

f(h|j,v, y∗) ∝ N (y∗|h + µj , Iσ
2
j )N (h|0, Q−1

v )

∝ N (y∗ − µj | h, Iσ2j )N (h|0, Q−1
v ).

Posterior on normal likelihood with a known variance and the normal prior on the mean, also
known as normal-normal model, has a closed form posterior distribution, which is also Gaussian.

f(h|j, v, y∗) = N
(

h
∣∣∣∣

(
Qv + I

1

σ2j

)−1 y − µj

σ2j
,

(
Qv + I

1

σ2j

)−1)
,

which is what we wanted to show.

A.3 v

In this section, we show that

f(v|θ1:T−v , y
∗) = f(v|s,h, µ,φ, ξ) = f(v|s,ω∗, µ,φ, ξ)

= N
(

v
∣∣∣∣

(
Qξ,φ + I

1

σ2s

)−1(ω∗ − µs

σ2s
+Qξ,φ1µ

)
,

(
Qξ,φ + I

1

σ2s

)−1)

Let ω∗
1 = log(h21) and ω∗

t = log((ht−ht−1)2), ∀t ≥ 2. Since ht−ht−1 ∼ N(0, evt), ω∗
t |vt = vt+λt,

where λt i.i.d∼ log(χ2
1). Then, without parameter expansion we have:

f(v|h, µ,φ) = f(v|ω∗, µ,φ) ∝ f(ω∗|v)f(v|µ,φ).

Both ω∗|v and v|µ,φ will be further expanded with variables s = (s1, . . . , sT )′ and ξ = (ξ1, . . . , ξT )′,
respectively for efficient sampling. In the following sections (A.3.1 and A.3.2) we show that:

f(ω∗|v, s) = N (ω∗ − µs|v, Iσ2s)

f(v|ξ, µ,φ) = N (v|1µ,Q−1
ξ,φ),

which is indeed, the normal-normal model, with the following posterior distribution:

f(v|s,ω∗, µ,φ, ξ) = N
(

v
∣∣∣∣

(
Qξ,φ + I

1

σ2s

)−1(ω∗ − µs

σ2s
+Qξ,φ1µ

)
,

(
Qξ,φ + I

1

σ2s

)−1)
,

where Qξ,φ is a tridiagonal matrix derived below.

27



A.3.1 Parameter expansion: f(ω∗|v, s)

Similar to the derivation on the likelihood y∗, we may approximate log(χ2
1) with 10-component

Gaussian Mixture proposed by Omori et al. [2007]. Parameter s = (s1, . . . , sT )′ is introduced to
expand ω∗

t = log(λ2t ). (Please refer to section 2.2 for more detail.) Then, we get the following
parameter expanded conditional prior ω∗|v, s.

f(ω∗
t |vt) =

10∑

i=1

piN (ω∗
t |µi + vt,σ

2
i )

f(ω∗
t |vt, st = k) = N (ω∗

t |µk + vt,σ
2
k) = N (ω∗

t − µk|vt,σ2k)

f(ω∗|v, s) = N (ω∗ − µs|v, Iσ2s)

A.3.2 Parameter expansion: f(v|ξ, µ,φ)

Let’s now consider the conditional prior on v|µ,φ. Note that we had v1 = µ + η0 and ∀t ≥ 2,
vt = µ+ φ(vt−1 − µ) + ηt−1, where ηt ∼ Z(12 ,

1
2 , 0, 1), with

f(v|µ,φ) = Z(v1|
1

2
,
1

2
, µ, 1)

T∏

t=2

Z(vt|
1

2
,
1

2
, µ+ φ(vt−1 − µ), 1).

ξ = (ξ0, . . . , ξT−1)′ is introduced to expand v|µ,φ, particularly the error term ηt such that

f(v|ξ, µ,φ) = N (v1|µ,
1

ξ0
)

T∏

t=2

N (vt|µ+ φ(vt−1 − µ),
1

ξt−1
)

ξt
i.i.d∼ PG(1, 0),

where PG represents the Polya-Gamma random variable. As an intermediary step, we introduce
v∗ = (v∗1, . . . , v

∗
T )

′, where v∗1 = v1 and v∗t+1 = vt+1 − φvt, t ≥ 2. This makes v∗ conditionally
independent Gaussian random variables:

f(v∗1|ξ1, µ) = f(v1|ξ0, µ) = N (v∗t |µ,
1

ξ0
)

f(v∗t |ξt−1, µ,φ) = f(vt − φvt−1|ξt−1, µ,φ) = N (v∗t |µ(1− φ),
1

ξt−1
) t ≥ 2,
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which can be expressed as multivariate Gaussian:

v∗|ξ, µ,φ ∼ N

(





µ

µ(1− φ)
...

µ(1− φ)




,





1
ξ0

1
ξ1

. . .
1

ξT−1





)
.

Similar to the derivation for h|v in section A.2, we have:

v|ξ, µ,φ =





1 0

φ 1

φ2 φ
. . .

... ... . . . . . .
φT−1 φT−2 . . . . . . 1





v∗|ξ, µ,φ

And Qξ,φ is also a band matrix

Qξ,φ =





ξ1 + φ2ξ2 −φξ2 0 . . . . . . 0

−φξ2 ξ2 + φ2ξ3 −φξ3
. . . . . . ...

0 −φξ3 ξ3 + φ2ξ4 −φξ4
. . .

... . . . . . . . . . . . . 0

... . . . . . . −φξT−1 ξT−1 + φ2ξT −φξT
0 . . . . . . 0 −φξT ξT





Thus, we get

f(v|ξ, µ,φ) = N (v|1µ,Q−1
ξ,φ).
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A.4 s

In section A.2, s = (s1, . . . , sT )′ was introduced to expand ω∗|v. Based on the same argument
used in section A.1, ∀k ∈ {1, . . . , 10}

p(st = k|ω∗
t , vt) =

f(ω∗
t |vt, st = k)p(st = k)

∑10
i=1 f(ω

∗
t |vt, st = i)p(st = i)

=
N (ω∗

t |vt + µk,σ2k)pk∑10
i=1 piN (ω∗

t |vt + µi,σ2i )
, ∀t ∈ {1, . . . , T},

∀k ∈ {1, . . . , 10}, (pk, µk,σ2k) can be found in Omori et al. [2007].

A.5 ξ

In section A.3, ξ = (ξ0, . . . , ξT−1)′ were introduced to expand v|µ,φ. As shown in Kowal et al.
[2019], given η|ξ ∼ N(0, 1

η ) and ξ ∼ PG(1, 0), we have ξ|η ∼ PG(1,η). As explored in Section 2.2:

v1 = µ+ η0

vt = µ+ φ(vt−1 − µ) + ηt−1, ∀t ≥ 2.

Naturally, η1 = v1 − µ and ηt = vt+1 − φvt − µ(1− φ), ∀t ≥ 2.

f(ξ0|v, µ,φ) = PG(ξ0|1, v1 − µ)

f(ξt−1|v, µ,φ) = PG(ξt−1|1, vt − φvt−1 − µ(1− φ)) ∀t ≥ 2,

where PG represents the density function for Polya-Gamma random variable.

A.6 µ

In this section, we show that:

f(µ|v, ξ, ξµ,φ) = f(µ|v̂∗φ, ξ, ξµ,φ) = f(v̂∗φ|µ,φ, ξ)f(µ|ξµ)

= N
(
µ

∣∣∣∣

(
1

σ2ξ,φ
+ ξµ

)−1 v̂∗φ
σ2ξ,φ

,

(
1

σ2ξ,φ
+ ξµ

)−1)
,

where v̂∗φ is defined below.
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In section A.3.2, we defined v∗ and showed that

v∗|ξ, µ,φ ∼ N

(





µ

µ(1− φ)
...

µ(1− φ)




,





1
ξ1

1
ξ2

. . .
1
ξT





)
.

Let’s further transform the parameter v∗ and define v∗φ

v∗φ|ξ, µ,φ =





v∗1
v∗2

(1−φ)
...
v∗T

(1−φ)




∼ N

(





µ

µ
...
µ




,





1
ξ0

1
(1−φ)2ξ1

. . .
1

(1−φ)2ξT−1





)
,

Then, we can see that

v̂∗φ|ξ, µ,φ :=
1

T

T∑

t=1

v∗φ,t ∼ N(µ,σ2ξ,φ)

σ2ξ,φ :=
1

T 2

(
1

ξ0
+

1

(1− φ)2

T−1∑

t=1

1

ξt

)

Let’s then consider f(µ|ξµ). Based on section 2.2, we showed that µ ∼ Z(12 ,
1
2 , 0, 1). Similar to the

parameter ξ for h in section A.3.2, we introduce a parameter ξµ, so that

f(µ|ξµ) = N (µ|0, 1

ξµ
)

f(ξµ) = PG(ξµ|1, 0).
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Clearly, we have the normal-normal model. We conclude

f(v̂∗φ|ξ, µ,φ) = N (v̂∗φ|µ,σ2ξ,φ)

f(µ|ξµ) = N (µ|0, 1

ξµ
)

f(µ|v̂∗φ, ξ, ξµ,φ) = N
(
µ

∣∣∣∣

(
1

σ2ξ,φ
+ ξµ

)−1 v̂∗φ
σ2ξ,φ

,

(
1

σ2ξ,φ
+ ξµ

)−1)
.

A.7 ξµ

Note that ξµ only depend on µ, where prior on µ|ξµ ∼ N(0, 1
ξµ
). Using the same derivation for

ξ|v, µ,φ in section A.5, we have:

f(ξµ|µ) = PG(ξµ|1, µ)

A.8 φ

For the parameter φ, we have

f(φ|v, ξ, µ) = f(φ|v̂µ, ξ, µ) ∝ f(v̂µ|ξ, µ,φ)f(φ)

Let’s remind ourselves that t ≥ 2, vt = µ + φ(vt−1 − µ) + ηt−1, and with parameter expansion on
ηt, we have

f(vt|vt−1, µ, ξt) = N (vt|µ+ φ(vt−1 − µ),
1

ξt−1
)

t ≥ 2, let’s define:

vµ,t =
1

2

(
vt − µ

vt−1 − µ
+ 1

)

v̂µ =
1

T − 1

T∑

t=2

vµ,t

Then, we have:

f(vµ,t|µ, ξt−1) = N
(
1

2

(
vt − µ

vt−1 − µ
+ 1

)∣∣∣∣
φ+ 1

2
,

1

4ξt−1(vt−1 − µ)2

)
t ≥ 2

f(v̂µ|µ, ξ) = N
(
v̂µ

∣∣∣∣
φ+ 1

2
,

1

(T − 1)2

T∑

t=2

1

4ξt−1(vt−1 − µ)2

)
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And we have:
φ+ 1

2
∼ Beta(10, 2)

We may think of this as a normal likelihood with the known variance and an unknown mean
parameter that follows a Beta distribution. Slice sampling by Neal [2003] was used to sample from
the conditional distribution.

B Conditional Distribution for Forecast

Continuing our discussion in section 2.4, we further explore Gibbs sampling for the following
joint distribution, f(θ1:T+m|y∗1:T ):

f(j1:T+m|θ1:T+m
−j1:T+m

y∗1:T ) = f(j1:T+m|h1:T+m, y∗1:T )

f(h1:T+m|θ1:T+m
−h1:T+m

, y∗1:T ) = f(h1:T+m|j1:T+m, v1:T+m, s1:T+m, y∗1:T )

f(v1:T+m|θ1:T+m
−v1:T+m

, y∗1:T ) = f(v1:T+m|h1:T+m, s1:T+m, µ, ξµ,φ)

f(s1:T+m|θ1:T+m
−s1:T+m

, y∗1:T ) = f(s1:T+m|h1:T+m, v1:T+m)

f(ξ1:T+m|θ1:T+m
−ξ1:T+m

, y∗1:T ) = f(ξ1:T+m|v1:T+m, µ,φ)

f(µ|θ1:T+m
−µ , y∗1:T ) = f(µ|v1:T+m, ξ1:T+m, ξµ,φ)

f(ξµ|θ1:T+m
−ξµ

, y∗1:T ) = f(ξµ|µ)

f(φ|θ1:T+m
−φ , y∗1:T ) = f(φ|v1:T+m, ξ1:T+m, µ)

Note that other than the distributions for j1:T+m and h1:T+m, the conditional distributions are
identical to the ones derived in section 2.3, and further explored in detail in Appendix A.

B.1 h

By conditional independence,

f(h1:T+m|θ1:T+m
−h1:T+m

, y∗) = f(h1:T+m|j1:T+m, v1:T+m, y∗1:T )

= f(hT+1:T+m|vT+1:T+m)f(h1:T |j1:T , v1:T , y∗1:T )

=
m∏

i=1

N (hT+i|hT+i−1, e
vT+i)f(h1:T |j1:T , v1:T , y∗1:T )

f(h1:T |j1:T , v1:T , y∗1:T ) is the joint conditional explored in A.2, and is indeed sampled regardless of
whether prediction is made or not. Based on the sample from hT , we may sequentially or jointly
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sample from h1:T+m. The joint distribution for h conditional on v were explored in section A.2,
with the precision matrix Qv. The same recipe maybe used.

B.2 j

Another variable that depends on y∗ were j. The goal is to sample from

f(j1:T+m|h1:T+m, v1:T+m,s1:T+m, ξ1:T+m, µ, ξµ,φ, y
∗)

=f(jT+1:T+m|j1:T , jT+1, h1:T+m, v1:T+m, s1:T+m, ξ1:T+m, µ, ξµ,φ, y
∗
1:T )

f(j1:T |h1:T+m, v1:T+m, s1:T+m, ξ1:T+m, µ, ξµ,φ, y
∗
1:T )

=
m∏

i=1

f(jT+i)f(j1:T |s1:T , y1:T ).

Thus, jT+1, . . . , jT+m and j1, . . . , jT are sampled from independent distributions. For jT+1, . . . , jT+m

are sampled from the Omori et al. [2007] 10-component mixture. The conditional distribution,
f(j1:T |s1:T , y1:T ) is explored in section A.1 and is sampled whether we make forecast or not.
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