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Abstract

We introduce BASTION, Bayesian Adaptive Seasonality and Trend Decomposition Incorpo-

rating Outliers and Noise, a flexible Bayesian framework for decomposing time series into trend

and multiple seasonality components. BASTION provides three key advantages over existing

time series decomposition methods: locally adaptive estimation of trend and seasonality for

improved accuracy, explicit modeling of outliers and time-varying volatility for robustness, and

rigorous uncertainty quantification via credible intervals. Using global-local shrinkage priors, we

derive the model and propose an efficient Gibbs sampling scheme for posterior inference. Sim-

ulation studies demonstrate BASTION’s superiority over existing methods, such as TBATS,

STR, and MSTL, in both accuracy and uncertainty quantification. We further showcase its

practical utility through applications to real-world datasets, including electricity demand, bike

rentals, and airline passenger data, where BASTION captures complex dynamics and adapts to

local changes while accounting for irregular components such as outliers and heteroskedasticity,

thereby providing a more nuanced and interpretable decomposition of the data.

1 Introduction

Time-series decomposition is a powerful analytical method used to break down a univariate time-

series into its constituent components, such as trend and seasonality. Decomposition reveals deeper

insights into underlying long or medium-term trend that may not be immediately apparent. One of

the most prominent applications of the method is in economic reporting by government agencies,

where it is used to adjust for seasonality when publishing key macroeconomic indicators such as the
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Consumer Price Index (CPI) (of Labor Statistics [1977]) and unemployment rates (Dagum [1979]).

By separating long-term trends from short-term seasonal fluctuations, decomposition allows for

clearer interpretation of economic conditions.

Beyond economics, time-series decomposition is widely used across disciplines, including climate

science (Grieser et al. [2002], Zhou et al. [2015]), epidemiology (Abeku et al. [2002], Ke et al. [2016]),

and business and management (Gardner Jr and Diaz-Saiz [2002], Zarnowitz and Ozyildirim [2006],

Rosselló and Sansó [2017]), where seasonal effects play a crucial role in data analysis. Additionally,

time-series decomposition is being incorporated into state-of-the-art time-series forecasting models.

Notable examples include TBATS by Alysha M. De Livera and Snyder [2011], ETSformer by Woo

et al. [2022] Prophet by Taylor and Letham [2018], and DeepFS by Jiang et al. [2022].

Various decomposition methods have been developed over the past 70 years. Based on the “ratio

to moving average” technique by Macaulay [1972], the U.S. Census Bureau introduced the first

computerized decomposition method called Census II by Shiskin [1957]. The method was followed

by successors like X-11 (Shiskin et al. [1965]), X-11-ARIMA (Dagum et al. [1980]), X-12-ARIMA

(David F. Findley and Chen [1998]), and the most recent version, X-13-SEATS (Findley [2005]).

Another classical and widely used method is STL (Seasonal-Trend decomposition using LOESS)

by Cleveland [1990], which iteratively uses Locally Weighted Scatterplot Smoothing (LOWESS) to

extract seasonality from trend.

Existing decomposition methods, though widely used, exhibit several limitations: (1) inability

to accommodate multiple seasonal patterns, (2) difficulty in adapting to abrupt changes in the

trend, (3) absence of uncertainty quantification, (4) inability to handle heteroskedastic noise, and

(5) lack of robustness to outliers. While addressing some of these challenges, no existing model fully

resolves all of them. For example, Multiple STL Bandara et al. [2021], an extension of STL, can

handle multiple seasonalities but lacks both uncertainty quantification and adaptability to sudden

trend shifts. Seasonality-Trend decomposition Dokumentov and Hyndman [2022] supports complex

seasonal patterns and includes uncertainty quantification, yet it remains limited in handling abrupt

changes. Robust STL Wen et al. [2019] manages multiple seasonal patterns, abrupt changes, and

outliers but does not provide uncertainty quantification. Furthermore, none of these methods

explicitly address heteroskedastic noise, which is found in various datasets across disciplines.

In this paper, we present Bayesian Adaptive Seasonality Trend decomposition Incorporating
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Outlier and Noise (BASTION), a novel, flexible, fully Bayesian framework for time-series decom-

position. A key innovation in BASTION is the use of a global-local shrinkage prior, a class of

continuous shrinkage prior distribution commonly applied in high-dimensional regression (Car-

valho et al. [2010], Bhadra et al. [2015]). Recently, this prior has been extended to time-series

applications, such as Bayesian smoothing (Kowal et al. [2019], Schafer and Matteson [2023], Huber

and Pfarrhofer [2021], Cho and Matteson [2024]), time-series regression (Cadonna et al. [2020]),

and changepoint detection (Wu et al. [2024], Banerjee [2022]). The global-local shrinkage prior

excels at reducing noise while preserving significant signals, enabling BASTION to produce locally

adaptive and robust yet smooth estimates of trend and seasonality. Moreover, since BASTION is

fully Bayesian, it offers uncertainty quantification for each component of the decomposition.

BASTION shares foundational similarities with STR Dokumentov and Hyndman [2022], as both

treat decomposition as a high-dimensional regression task and can incorporate time-varying covari-

ates to capture complex effects in the data. However, BASTION’s Bayesian framework introduces

additional advantages not available in frequentist approaches. For instance, BASTION can include

extra components beyond trend and seasonality, such as an additive outlier term inspired by the

ABCO model Wu et al. [2024], which enhances robustness to anomalies. Furthermore, BASTION

addresses heteroskedasticity by modeling time-varying volatility through stochastic volatility model

Hull and White [1987]. This flexibility allows BASTION to effectively handle seasonality, trend,

outliers, and heteroskedastic noise within a cohesive, Bayesian framework.

The paper is organized as follows: Section 2 introduces the full model and its parameters.

Appendix A provides the derivation of the Gibbs sampling scheme for posterior inference. Section 3

compares BASTION with existing models, including TBATS (Alysha M. De Livera and Snyder

[2011]), MSTL (Bandara et al. [2021]), and STR (Dokumentov and Hyndman [2022]), using a

variety of simulated time series. Section 4 presents empirical analyses of three datasets: monthly

airline passengers in the U.S., daily electricity demand in New York state, and daily bike rentals in

Washington D.C.
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2 Method

2.1 Single Seasonality and Trend Decomposition with BASTION

Similar to existing decomposition methods, BASTION employs an additive observation equation

structure to decompose a length N time-series {yt}Nt=1, into a trend {Tt}Nt=1, and a seasonality

component {St}Nt=1 with k being the length of the season.

yt = Tt + St +Rt [Rt|σy]
iid∼ N(0, σ2y), (1)

Different decomposition methods employ a variety of smoothing algorithms to extract trend

and seasonal components from a noisy time series. As their names suggest, STL and MSTL rely

on LOESS, while STR achieves smooth estimates of trend and seasonality by imposing L1 or

L2 penalties on the second and seasonal differences of the respective components, similar to the

Hodrick-Prescott filter by Hodrick and Prescott [1997] or the L1 trend filter by Kim et al. [2009],

Tibshirani [2014]. Meanwhile, methods developed by the Census Bureau, such as X-12, employ

iterated moving average filters to achieve smoothing.

BASTION adopts a similar approach to STR by simultaneously penalizing both the second and

seasonal differences. However, as a Bayesian method, BASTION incorporates these constraints by

using global-local shrinkage priors, which provide a probabilistic framework for adaptively smooth-

ing the data. The application of global-local shrinkage priors to trend filtering in time series was

pioneered in Kowal et al. [2019] with its Bayesian Trend Filter (BTF), which applies the Dynamic

Shrinkage Process, an extension of horseshoe prior Carvalho et al. [2010], to the first or second

differences of the mean component. This method demonstrated improved performance over tra-

ditional smoothing algorithms such as the L1 trend filter by Kim et al. [2009], Tibshirani [2014]

and smoothing splines by Schoenberg [1964], particularly in terms of accuracy and uncertainty

quantification.

The defining characteristic of global-local shrinkage priors is their use of a global parameter

τ , which controls overall shrinkage, paired with a time-varying local parameter λt that captures

local variation. There are various choices for these priors, including the horseshoe prior Carvalho

et al. [2010], horseshoe plus Bhadra et al. [2015], dynamic shrinkage processes Kowal et al. [2019],

the regularized horseshoe Piironen and Vehtari [2017], and the triple Gamma prior Cadonna et al.
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[2020]. These priors differ in their degree of shrinkage and computational efficiency. Considering

the large number of parameters to be estimated for time-series decomposition task, we chose the

horseshoe prior for BASTION, as it requires the least number of parameters to be estimated

compared to other options.

BASTION extends the BTF to time-series decomposition by penalizing the second differencing

of the trend component and the seasonal differencing of the seasonal components. This simulta-

neous penalization allows both trend and seasonality to adapt to local changes while maintaining

smoothness. For the trend component, the prior distributions are specified as below,

[Tt|σy, λT,t] ∼ N(0, σ2yλ
2
T,t) ∀t ∈ {1, 2},

[∆2Tt|σy, τT , λT,t] ∼ N(0, σ2yτ
2
Tλ

2
T,t) t ≥ 3,

[τT ] ∼ C+(0, 1), [λT,t]
iid∼ C+(0, 1),

and for the seasonality component,

[S1] = 0, [S2|σy, λS,t] ∼ N(0, σ2yλ
2
S,2),

[∆2St|σy, τS , λS ] ∼ N(0, σ2yτ
2
S , λ

2
S,t) ∀t ∈ {3, . . . , k},

[(1−B)kSt|σy, τS , λS,t] ∼ N(0, σ2yτ
2
Sλ

2
Sk,t) t ≥ (k + 1),

[τS ] ∼ C+(0, 1), [λS,t]
iid∼ C+(0, 1).

For identifiability, Sk
1 = 0. For t ∈ {3, k}, priors are specified on the second differencing to induce

smoothness. For t ≥ k, priors on the seasonal differencing is imposed. By applying global-local

shrinkage priors to both the trend and seasonality, BASTION provides locally adaptive yet smooth

estimate of both the trend and seasonality component.

2.2 Multiple Seasonalities

Naturally, the framework described in Section 2.1 to account for multiple seasonalities. Let’s

consider p seasonality terms with ki representing the length of the cycle for each seasonality rep-

resented by i = 1, . . . , P . We have the following observation equations for the trend and multiple
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seasonalities decomposition:

yt = Tt +

P∑
i=1

Si,t +Rt [Rt|σy]
iid∼ N(0, σ2y),

and similar to the single seasonality model described in Section 2.1, the horseshoe prior are assumed

on the seasonal differencing of {Si,t}Nt=1 for i = {1, . . . P}.

2.3 Additive Outlier

In addition to providing a locally adaptive estimate of the trend, a key feature of BASTION

is its explicit modeling of additive outliers. Existing methods typically handle outliers by pre-

adjusting the observed series or by applying smoothing methods that are robust to outliers, rather

than directly addressing them within the decomposition framework. For instance, the X-12-ARIMA

model uses an ARIMA approach for pre-adjustment, while the Robust STL method applies bilateral

filtering to denoise the series before decomposition. The STR addresses outliers by imposing an

L1 penalty instead of L2, thereby makeing the trend and seasonality estimates more robust. In

contrast, MSTL and STL do not address outliers at all.

BASTION, however, is the first decomposition method to explicitly model outliers through

the use of an extreme shrinkage-inducing prior inspired by the approach in Wu et al. [2024]. Let

{ζt}Nt=1 represent the outlier process. To capture large deviations at isolated time points, BASTION

applies the horseshoe+ prior by Bhadra et al. [2015] to ζt. By nesting two levels of half-Cauchy

distributions, the horseshoe+ prior provides more aggressive shrinkage, allowing larger deviations

from zero at a fewer number of locations when compared to the regular horseshoe prior. Specifically,

[ζt|σy, λζ,t] ∼ N(0, σ2yλ
2
ζ,t) [λζ,t|τζ , ξζ,t] ∼ C+(0, τζξζ,t),

[τζ ] ∼ C+(0, 1), [ξζ,t]
iid∼ C+(0, 1).

The outlier term ζt is then incorporated into the observation equation, as described in previous

sections. By explicitly modeling outliers, BASTION enables these anomalous points to be isolated

for further analysis. Outliers often signify unique or noteworthy events at specific time points, and

by pinpointing their locations, one can conduct additional analyses to better understand the nature

and causes of these anomalies.
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2.4 Heteroskedastic Noise

BASTION explicitly makes a distributional assumption on the remainder term, Rt ∼ N(0, σ2y).

While this assumption is commonly applied, it may be overly restrictive in cases where the re-

mainder exhibits heteroskedasticity, as it could lead to inaccurate estimates of both the trend and

seasonal components. Heteroskedastic noise, characterized by changing volatility over time, is ob-

served in various academic disciplines such as finance Black and Scholes [1973], Hull and White

[1987], Taylor [2008], Melino and Turnbull [1990], epidemiology Achcar et al. [2020], Sarkar and

Chatterjee [2017], geophysics Mariani et al. [2018], Wang et al. [2005], and environmental science

Tippett [2014], Modarres and Ouarda [2014], Hor et al. [2006]. Despite its prevalence, no existing

decomposition methods explicitly account for time-varying volatility within their frameworks.

To address this gap, BASTION introduces a stochastic volatility (SV) model to capture het-

eroskedasticity in the remainder term. In addition to the overall variance parameter, σy, we in-

troduce a time-varying variance component {νt}Nt=1, which follows a first order stochastic volatility

model by Kim et al. [1998]. This allows the model to adapt to changes in volatility over time.

Specifically, the process is defined as follows:

[Rt|σy, νt] ∼ N(0, σ2yν
2
t )

log(ν2t ) = µ+ ϕ(log(ν2t−1)− µ) + σνϵt

[ϵt]
iid∼ N(0, 1).

Here, µ represents the mean log-variance, ϕ is a persistence parameter that controls how strongly

current volatility depends on past values, and σν dictates the variability of the log-variance process.

By incorporating a time-varying volatility model, BASTION provides a more flexible decomposition

that adapts to heteroskedastic structures in the data. This extension allows for more accurate trend

and seasonality estimation, particularly in data with substantial fluctuations in residual variance.

2.5 Additional Covariates

Additional covariates can often help explain variation in a time series. For example, Stock and

W.Watson [2003] demonstrates that certain asset prices can be effective predictors of inflation,

while Hamilton [1983] uses oil prices to explain macroeconomic fluctuations. In the STR model,
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Dokumentov and Hyndman [2022] incorporates temperature as an additional covariate to account

for variation in electricity demand, beyond the trend and seasonal components. The additive

framework of BASTION naturally facilitates the inclusion of regression terms, allowing the inclusion

of time-varying covariates. Given k time varying covariates {x1,t}Nt=1 . . . {xk,t}Nt=1, we have the

following trend and multiple seasonality decomposition with time varying covariates:

yt = Tt +
P∑
i=1

Si,t +
k∑

j=1

βjxj,t +Rt [Rt|σy]
iid∼ N(0, σ2y)

[βj |ηj ] ∼ N(0, η2j ) [ηj ] ∼ η−2
j dη2j , j = 1 . . . k.

In BASTION, as described in Sections 2.1 and 2.2, seasonality is modeled through a seasonal differ-

encing operator, which may not fully capture irregular seasonal effects. The regression framework

additionally allows for the incorporation of holiday effects or other complex, non-regular seasonal

patterns that fixed seasonal differencing might miss, thereby enhancing the model’s flexibility in

capturing nuanced temporal variations.

2.6 Full Model

In order to conduct posterior inference on the estimated parameters, Markov Chain Monte

Carlo is used. Note that other than the parameter ϕ, the persistence parameter for the SV model

in the remainder term, the full conditional distributions can be derived analytically as they are

all conditionally conjugate priors, which then Gibbs sampling may be used. For sampling the pa-

rameters related to the horseshoe prior, parameter expanded Gibbs sampling scheme by Makalic

and Schmidt [2016] is used. For all the state variables, {Tt}, {St}, and {ζt}, which are all con-

ditionally Gaussian, efficient multivariate Gaussian sampler by Rue [2001] is used. All Without

a Loop (AWOL) sampler by Kastner and Frühwirth-Schnatter [2014] for sampling parameters is

for sampling the SV model in the remainder term. For clarity, the parameterization and the prior
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distributions of BASTION as described in Section 2 is described below:

Observation Equation

yt = Tt +
P∑
i=1

Ski
i,t +

k∑
j=1

βjxj,t +Rt, [Rt|σy, νt]
iid∼ N(0, σ2yν

2
t )

Trend

[Tt|σy, λT,t] ∼ N(0, σ2yλ
2
T,t) ∀t ∈ {1, 2},

[∆2Tt|σy, τT , λT,t] ∼ N(0, σ2yτ
2
Tλ

2
T,t) t ≥ 3,

[τT ] ∼ C+(0, 1), [λT,t]
iid∼ C+(0, 1).

Multiple Seasonality

[Si,1] = 0, [Si,2|σy, λSi,2] ∼ N(0, σ2yλ
2
Si,2),

[∆2Si,t|σy, τSi , λSi,t] ∼ N(0, σ2yτ
2
Si
λ2Si,t) ∀t ∈ {3, . . . , ki},

[(1−B)kiSi,t|σy, τSi , λSi,t] ∼ N(0, σ2yτ
2
Si
λ2Si,t) ∀t ≥ (ki + 1),

[τSi ] ∼ C+(0, 1), [λSi,t]
iid∼ C+(0, 1).

Outliers

[ζt|σy, λζ,t] ∼ N(0, σ2yλ
2
ζ,t), [λζ,t|τζ , ξζ,t] ∼ C+(0, τζξζ,t)

[τζ ] ∼ C+(0, 1), [ξζ,t]
iid∼ C+(0, 1).

Remainder

[σ2y ] ∼ σ−2
y dσ2y

log(ν2t ) = µ+ ϕ(log(ν2t−1)− µ) + σνϵt, [ϵt]
iid∼ N(0, 1)

[µ] ∼ N(0, 100), [ϕ] ∼ Beta(5, 1.5)

[σ2ν ] ∼ IG(1/2, 1/2)

Regression Coefficients

[βj |ηj ] ∼ N(0, σ2yη
2
j ), [ηj ] ∼ η−2

j dη2j , j = 1 . . .m

Let’s first define Y = [y1, . . . , yN ]′ and similarly for the variables T ,Si, ζ,ν,β,X.The full condi-

tional posterior distributions for Gibbs sampling are derived in the Appendix A.
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3 Simulation Study

3.1 Set Up

Trend Seasonality Seasonal
Length Remainder Outlier

DGS 1 Piecewise Linear Fourier Pairs 12, 40 Constant FALSE
DGS 2 Linear Piecewise Constant 40 Constant FALSE
DGS 3 Quadratic Fourier Pair 50 Stochastic Volatility FALSE

DGS 4 Piecewise Linear Piecewise Constant
& Fourier Pair 12, 40 Stochastic Volatility TRUE

DGS 5 Quadratic Fourier Pair 50 Constant FALSE

Table 1: Descriptions of data generating schemes (DGS) with regards to their trend, seasonality,
seasonal lengths, remainder, and outliers. The sample size of each time-series is 500, and each DGS
is replicated 1000 times with random coefficients for both the trend and seasonality components.

In this section, BASTION is compared against existing multiple seasonalities decomposition

models: MSTL by Bandara et al. [2021], STR by Dokumentov and Hyndman [2022], and TBATS

by Alysha M. De Livera and Snyder [2011] across various simulation scenarios described in Table 1.

Exact simulation schemes are detailed in Appendix B. The comparisons are made in terms of their

ability to accurately extract trend, seasonality, and signal (trend and seasonality combined), by

measuring the mean squared error (MSE). As a statistical model, BASTION allows for uncertainty

quantification via credible region. STR, a Frequentist counterpart, is the only other decomposition

method with uncertainty quantification. Empirical coverages based on BASTION’s credible interval

and STR’s confidence intervals are compared to measure each method’s accuracy of its uncertainty

quantification.

Due to the incorporation of global-local shrinkage prior, BASTION excels at capturing abrupt

changes in trend and seasonality components, offering a significant advantage in scenarios with

structural breaks or rapid changes. In addition, its Bayesian framework allows for the explicit

models additive outliers and heteroskedastic noise, overlooked by existing methods, enabling more

accurate and robust estimation, particularly in complex data environments. Consequently, BAS-

TION is expected to outperform existing models in DGS 1 through 4 due to their distinct char-

acteristics: trend discontinuities (Figure 1a), seasonal discontinuities (Figure 1b), heteroskedastic

noise (Figure 1c), or a combination of these with additive outliers (Figure 1d). DGS 5, on the other
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(a) DGS 1 (b) DGS 2 (c) DGS 3

(d) DGS 4 (e) DGS 5

Figure 1: Synthetic time series generated by adding a trend component, Tt, seasonal components,
St, and remainders Rt based on the descriptions in Table 1. Tt are drawn in blue and Tt + St are
drawn in black. Figures represent one replication of each DGS.

hand, replicates the simulation study design used by Dokumentov and Hyndman [2022] (Figure 1e),

providing a benchmark for fair comparison against existing methods.

All models are implemented in R (R Core Team [2024]). TBATS and MSTL are implemented

using the forecast package (Hyndman et al. [2024]), and STR is implemented using the stR

package (Dokumentov and Hyndman [2024]). For BASTION, we extend the efficient sampling

approach for the horseshoe prior from Makalic and Schmidt [2016], the Gaussian state-space model

framework from Rue [2001], and the stochastic volatility model from Kastner [2016].

3.2 Results

Table 2 summarizes the performance of BASTION compared to MSTL, TBATS, and STR

in terms of accuracy (measured by Mean Squared Error, MSE) and uncertainty quantification

(measured by empirical coverage). BASTION consistently achieved the lowest or near-lowest MSE

across all five simulation scenarios for trend, seasonality, and their combination (signal), highlighting

its precision in decomposition. In terms of uncertainty quantification, BASTION demonstrated

superior performance, with empirical coverage consistently exceeding the nominal 95% across all

simulations. In contrast, STR frequently under-covers, with empirical coverage as low as 62% in
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Mean Squared Error Empirical Coverage
TBATS MSTL STR BASTION STR BASTION

DGS 1
Signal 13.878 11.760 10.829 0.376 0.799 0.998
Trend 3.624 13.227 13.785 0.581 0.616 0.970
Seasonality 11.672 2.712 2.575 0.536 0.815 0.999

DGS 2
Signal 1.411 1.214 0.7020 0.3922 0.869 0.989
Trend 0.621 0.184 0.0878 0.0579 0.716 0.976
Seasonality 0.838 1.032 0.6156 0.3412 0.793 0.956

DGS 3
Signal 11.307 3.041 0.706 0.439 0.940 0.995
Trend 10.509 0.364 0.274 0.293 0.812 0.929
Seasonality 0.900 2.683 0.444 0.278 0.847 0.981

DGS 4
Signal 11.829 11.430 20.548 2.877 0.679 0.981
Trend 11.111 12.328 13.431 5.210 0.668 0.939
Seasonality 5.364 3.045 11.358 2.562 0.623 0.999

DGS 5
Signal 0.682 0.3457 0.1087 0.0946 0.951 0.998
Trend 0.598 0.0432 0.0387 0.0650 0.829 0.943
Seasonality 0.093 0.3040 0.0731 0.0756 0.848 0.983

Table 2: Mean Squared Error (MSE) and Empirical Coverage (EC) for Trend, Seasonality, and
their combined component, denoted as Signal. Each data generating scheme (DGS), described in
Table 1, is replicated 1000 times. The EC is calculated using 95% confidence intervals for STR and
95% credible intervals for BASTION.

some cases and achieving nominal coverage only for specific scenarios. These results confirm that

BASTION provides not only accurate decomposition but also reliable uncertainty quantification,

outperforming existing methods.

Superior results of BASTION on DGS 1 and DGS 2 highlight its ability to accurately estimate

both trend and seasonality components in the presence of abrupt changes. Figure 2 displays one

replication of DGS 1, where discontinuities in the true trend occur around t = 100, 200, and 300.

The estimates by MSTL (Figure 2b) exhibit excessive smoothness at these points, failing to adapt

to local changes. While STR (Figure 2d) is more locally adaptive than MSTL, it still misses the

level shift at t = 300. TBATS (Figure 2c) captures the discontinuities but suffers from overfitting,

resulting in noisy estimates. In contrast, BASTION (Figure 2e) strikes a balance: it produces

a smooth overall trend while effectively adapting to sharp changes, offering the most accurate
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(a) True Trend (b) MSTL (c) TBATS

(d) STR (e) BASTION

Figure 2: One replication of synthetic time series generated from the data generating scheme 1
(DGS 1). The true trend alongside estimates produced by MSTL, TBATS, STR, and BASTION
are drawn in black line from panel (a) through (e) respectively.

representation of the underlying process. In DGS 2, the seasonality consists of repeating piecewise

constant functions with sharp discontinuities. BASTION again achieves the lowest MSE, followed

by STR, MSTL, and TBATS, further confirming its superior ability to handle abrupt changes in

the data.

DGS 3 and DGS 4 highlight BASTION’s ability to explicitly model both heteroskedastic noise

and additive outliers. Specifically, DGS 3 exhibits heteroskedastic noise following a stochastic

volatility (SV) model with lag order 1 (Figure 3a). BASTION not only accurately captures the un-

derlying trend and seasonality but also estimates the time-varying variance, as shown in Figure 3c.

In DGS 4, the data contain seasonality with sharp discontinuities as well as large outliers, which are

denoted by red dashed lines in Figure 3b. BASTION successfully identifies and explicitly measures

these outliers while also providing accurate estimates of the trend and seasonality, as depicted in

Figure 3d.

Even in the absence of abrupt changes, outliers, or stochastic volatility, as seen in DGS 5,

BASTION continues to provide competitive results. While STR achieves slightly better accuracy

in this smooth scenario with a slowly changing mean and seasonality modeled using Fourier pairs,

as shown in Dokumentov and Hyndman [2022], BASTION still produces reasonable and reliable
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(a) Original Data with Time-Varying Variance
(DGS 3) (b) Original Data with Outliers (DGS 4)

(c) BASTION Estimate of Signal and Variance
(DGS 3)

(d) BASTION Estimates for Signal and Outliers
(DGS 4)

Figure 3: Comparison of sample paths from DGS 3 and DGS 4 with corresponding BASTION model
estimates. Panels (a) and (b) display the original data: DGS 3 highlights time-varying variance,
while DGS 4 includes outliers marked by red dashed lines. Panel (c) shows BASTION’s estimates
of trend, seasonality, and time-varying variance with 95% credible intervals shaded in grey. Panel
(d) presents BASTION’s estimates of trend, seasonality, and outliers, with outlier estimates shown
below and 95% credible intervals shaded in grey.

estimates. This demonstrates that BASTION performs well not only in challenging scenarios with

sharp changes or noise complexities but also in relatively smooth and well-behaved settings.

Overall, the results across all simulation scenarios (DGS 1-5) demonstrate BASTION’s superior

performance in both accuracy and uncertainty quantification compared to existing decomposition

methods. In terms of accuracy, BASTION consistently achieves the lowest or near-lowest Mean

Squared Error (MSE) across trend, seasonality, and their combination (signal), outperforming

MSTL, TBATS, and STR. This is particularly evident in scenarios with abrupt changes, time-

varying variance, and outliers, where BASTION balances smoothness with adaptiveness to sharp
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transitions.

In terms of uncertainty quantification, BASTION’s empirical coverage consistently exceeds the

nominal 95% credible intervals across all simulations. In contrast, STR underperforms, with its

confidence intervals often falling well below the nominal level, particularly in scenarios with more

complex noise structures or outliers. These results highlight BASTION’s ability to provide reliable

and accurate estimates of the underlying time series components while offering a robust framework

for uncertainty quantification.

4 Empirical Data Analysis

In this section, we apply BASTION to three real-world datasets that exhibit complex seasonality

patterns, abrupt changes, heteroskedastic noise or combination of these characteristics. The first

dataset consists of monthly U.S. airline traffic from 2003 to 2023, obtained from Kaggle (Yan [2023]),

which highlights sharp declines in passenger volume during significant disruptions such as the

COVID-19 pandemic. The second dataset records the daily number of bike rentals from the Capital

Bikeshare system serving Washington, D.C., providing an example of yearly patterns, as well as

demand spikes and heteroskedastic noise (Bikeshare [2024]). Finally, we analyze the average daily

electricity demand (in Megawatts per hour) for the state of New York, sourced from the New York

Independent System Operator (NYISO) via the U.S. Energy Information Administration [EIA].

This dataset captures complex long-term trend, with complex seasonal patterns and heteroskedastic

noise.

4.1 U.S. Airline Traffic Data

We analyze the monthly international airline traffic data from 2003 to 2023, as shown in Fig-

ure 4a. The seasonality component (Figure 4c) reveals a clear yearly cycle. Specifically, passenger

numbers are low at the beginning of the year, followed by a steady increase, peaking in July and

August, likely due to the summer vacation season. This is followed by a sharp decline during

September to November, before experiencing a moderate rise again in December and January,

coinciding with the end-of-year holiday season.

Over time, the magnitude of the seasonal pattern shows a gradual increase from 2003 to 2015
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(a) Observed Data (b) Trend Component

(c) Yearly Seasonality Component (d) Remainder

Figure 4: Monthly international airline traffic in the U.S from 2003 to 2023 (Figure 4a), and its
Trend (Figure 4b) Seasonality (Figure 4c), and remainder (Figure 4d) decomposition based on the
proposed model, BASTION. 95% credible regions are generated and shaded in grey for the trend
and seasonality components.

but stabilizes between 2015 and 2023. The trend component (Figure 4b) highlights a significant

drop in the late 2019, corresponding to the COVID-19 pandemic and resulting travel restrictions.

Finally, the remainder term (Figure 4d) does not exhibit any substantial patterns or structural

changes over the observed time horizon, suggesting that most variability is accounted for by the

trend and seasonality components.

The most notable feature of this dataset is the sharp decline in the number of airline passengers

during late 2019 and early 2020, corresponding to the travel ban imposed in response to the COVID-

19 outbreak. This event introduces a clear discontinuity in the trend, similar to the behavior

observed in DGS 1. Figure 9 presents the trend estimates produced by TBATS, MSTL, STR,

and our proposed model, BASTION. BASTION provides a smooth yet adaptive trend estimate,

accurately capturing the abrupt drop caused by the travel ban. In contrast, MSTL and STR

produce oversmoothed estimates, failing to identify the sharp structural break and instead treating

the drop as a gradual change. TBATS, while capable of detecting the discontinuity, results in a
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(a) TBATS (b) MSTL

(c) STR (d) BASTION

Figure 5: Trend estimates for monthly international airline traffic in the U.S. from 2016 to 2023,
highlighting the discontinuity caused by the COVID-19 travel ban in late 2019 and early 2020.
Figures (a) - (d) display estimates from TBATS, MSTL, STR, and BASTION, respectively.

noisier estimate that lacks smoothness. These results demonstrate BASTION’s ability to maintain

a smooth trend while effectively adapting to abrupt changes in the series.

4.2 New York Daily Average Electricity Demand

The daily average electricity demand data for New York, spanning from July 1, 2015, to June 30,

2024, reveals clear seasonal patterns. As shown in Figure 6a(a), electricity demand peaks during the

summer months due to the widespread use of air conditioning and rises again in winter, reflecting

heating needs. In contrast, demand decreases during the spring and fall, when milder temperatures

reduce the reliance on cooling or heating. The 30-day rolling standard deviation, illustrated in

Figure 6b, highlights significant heteroskedasticity, with variability in demand itself exhibiting a

seasonal pattern. Variability is higher during the summer and winter months, coinciding with

periods of peak demand, while it remains lower during the spring and fall, when electricity usage

is more stable. Over the long term, no significant trend is observed, though there is a slight overall
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(a) Daily average electricity demand (b) Rolling 30-day standard deviation

Figure 6: Figure 6a shows daily average electricity demand (in megawatts) in New York State from
2015-07-01 to 2024-06-30, displaying seasonal patterns associated with weather-driven demand
fluctuations. Figure 6b shows rolling 30-day standard deviation of electricity demand. Data are
sourced from the New York Independent System Operator (NYISO) through the U.S. Energy
Information Administration.

decline in electricity demand, potentially reflecting the impact of improved energy efficiency over

the years.

(a) Trend Estimate and observed data (b) Volatility Estimate

(c) Weekly Seasonality (d) Yearly Seasonality

Figure 7: Decomposition of the trend (7a), volatility (7b), weekly seasonality (7c), and yearly
seasonality (7d) based on BASTION for daily average electricity demand from 2015-07-01 2024-06-
30. 95% credible regions are drawn in dark grey.

By decomposing the noisy observed time series into multiple components, BASTION facilitates
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a more detailed analysis of the data, as shown in Figure 7. Figure 7a illustrates the estimated trend

and its 95% credible region overlaid on the observed data. After accounting for seasonal effects,

the average daily electricity demand remains relatively stable over time, with a noticeable dip in

late 2019, likely reflecting the impact of COVID-19-related shutdowns.

BASTION’s estimate of time-varying volatility, depicted in Figure 6b, highlights not only the

heteroskedasticity of the noise term but also the presence of seasonality in the volatility itself.

Specifically, higher volatility is observed during the winter months, while lower volatility occurs

during the summer. This seasonal pattern in volatility aligns closely with the yearly seasonality

pattern shown in Figure 7d. Notably, BASTION is unique among decomposition methods in its

ability to directly model volatility, offering valuable insights into the dynamics of the data that

other models cannot provide.

The seasonality components extracted by BASTION also reveal patterns that are not immedi-

ately evident in the raw data. Both weekly and yearly seasonalities are modeled. While the weekly

pattern is difficult to discern from the observed data, Figure 7c clearly demonstrates it: electric-

ity demand remains relatively steady during weekdays and decreases on weekends, corroborating

common patterns of electricity usage.

The differences in the yearly seasonality estimates produced by BASTION compared to existing

models are studied in detailed, as shown in Figure 8. All four methods accurately capture the broad

seasonal patterns typical of the East Coast, with peak electricity demand during the summer months

of July and August due to increased cooling needs. This is followed by a steady decline in the fall

and a moderate rise during the winter, reflecting increased heating requirements.

One interesting feature visible in the BASTION and MSTL estimates is a small dip in de-

mand lasting approximately 30 days, beginning in mid-December and ending in mid-January. This

drop coincides with the holiday season, during which many businesses and industries scale back

operations or temporarily close. The reduction in commercial and industrial activity significantly

decreases electricity consumption, which is a primary contributor to overall demand.

BASION stands out for its ability to detect such subtle changes while maintaining a smooth and

accurate estimate of the seasonal component. This characteristic highlights BASTION’s capability

to adapt to abrupt changes in seasonality patterns, a strength that is also demonstrated in DGS

2 of the simulation study. These findings reinforce the utility of BASTION in capturing nuanced
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(a) TBATS (b) MSTL

(c) STR (d) BASTION

Figure 8: Yearly seasonality estimates for daily average electricity demand in New York from July
2015 to June 2017. Figures (a) - (d) display estimates from TBATS, MSTL, STR, and BASTION,
respectively.

seasonal variations that other methods may miss.

4.3 Daily Bike Rentals via Capital Bikeshare System

We analyze daily bike rentals from the Capital Bikeshare system, a company providing bike

rentals in the Washington, D.C., and surrounding areas. The studied period is between 2012-01-01

and 2017-12-31. The dataset ( Bikeshare [2024]), categorizes bike rentals into two groups: members

and non-members. This analysis focuses on non-member users, as their rental patterns exhibit more

discernible seasonality patterns (Figure 9a).

The data’s most notable feature is its yearly seasonality. Bike rentals increase starting in Jan-

uary, peak during the summer months (June to August), and decline toward December, reflecting

seasonal demand driven by weather. A similar seasonal pattern appears in the 30-day rolling

standard deviation (Figure 9b), indicating that rental activity becomes more variable during high-

demand periods. The BASTION’s estimate of the volatility (Figure 9d) also highlights increased

volatility during the high demand period, also capturing the seasonal pattern present in the data.
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(a) Observed Data (b) Rolling 30-day Standard Deviation

(c) Trend Estimate and observed data (d) Volatility Estimate

Figure 9: Daily total number of bike rentals via Capital Bikeshare system by non-members from
2012-01-01 to 2017-12-31 (9a), its rolling 30-day standard deviation (9b), BASTION estimate of
the trend (7a) and volatility (7b). 95% credible regions are drawn in grey.

In contrast to the strong seasonal patterns, no clear long-term trend is apparent in the observed

data (Figure 9a). The BASTION trend estimate (Figure 9c) suggests a slight overall increase in

bike rentals, but the trend is not pronounced and exhibits localized fluctuations. These fluctua-

tions, while present in the trend estimate, are accompanied by relatively large uncertainty bands,

indicating that they are likely attributable to noise rather than meaningful long-term changes in

demand.

Figure 10 presents the weekly and yearly seasonality components estimated using MSTL, STR,

and BASTION. The TBATS model is excluded from the analysis as it fails to extract a meaningful

seasonality component. The weekly seasonal components reveal a consistent pattern across all three

models, showing higher bike rentals during weekends and lower, steady demand on weekdays. How-

ever, the long-term patterns over multiple years differ across models. STR (Figure 10b) estimates

a steady weekly pattern that declines in 2015 before rebounding in 2016. In contrast, MSTL (Fig-
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(a) MSTL (Weekly) (b) STR (Weekly) (c) BASTION (Weekly)

(d) MSTL (Yearly) (e) STR (Yearly) (f) BASTION (Yearly)

Figure 10: Weekly (a-c) and yearly (d-f) seasonal components of daily non-member bike rentals
from the Capital Bikeshare system from 2012-01-01 to 2017-12-31, as estimated by MSTL, STR,
and BASTION. The weekly panels highlight short-term periodic patterns, while the yearly panels
capture long-term seasonal variations across the study period.

ure 10a and BASTION (Figure 10c produce more dynamic weekly patterns, with smaller seasonal

cycles in winter and larger cycles in summer.

The estimates from MSTL and BASTION align more closely with the nature of the data, which

focuses on non-member rentals. Non-members are likely tourists or occasional users, whose activity

is highly seasonal. Tourists are less active during colder months and more active during warmer

months, particularly in a city like Washington, D.C., where winter weather often discourages biking.

The dynamic patterns captured by MSTL and BASTION with smaller weekend peaks in winter and

larger ones in summer reflect these seasonal trends and align well with real-world factors influencing

bike rental activity.

All three models produced consistent yearly components, aligning with the observed patterns

in Figure 9a, where bike demand peaks during the summer months and steadily declines toward

winter, reflecting seasonal trends. However, the estimates also reveal local outliers during the

summer months, with varying degrees of intensity across the models. Notably, BASTION, which

incorporates an explicit outlier term, produces the smoothest estimates with the fewest outliers,

highlighting its ability to account for irregularities in the data more effectively.
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5 Conclusion

In this paper, we introduced BASTION (Bayesian Adaptive Seasonality and Trend Decompo-

sition Incorporating Outliers and Noise), a novel and flexible Bayesian framework for decomposing

time series into trend, multiple seasonalities with explicit modeling of both outliers and volatility.

BASTION’s key contributions lie in its ability to provide locally adaptive estimates of both trend

and seasonality, explicit modeling of outliers and volatility, and rigorous uncertainty quantifica-

tion through credible intervals. By leveraging global-local shrinkage priors, we derived an efficient

Gibbs sampling scheme for posterior inference, enabling robust and accurate decomposition even

in complex time-series datasets.

Through simulation studies, BASTION demonstrated superior performance compared to exist-

ing models such as TBATS, STR, and MSTL. It provides not only more accurate estimate of the

trend and seasonality components but also more reliable uncertainty quantification, as evidenced

by its robust nominal coverage in various scenarios. Strengths of BASTION is also shown via anal-

ysis of data including airline passenger, electricity demand, and bike rentals. BASTION provides

insights that aligns with the underlying characteristics of the data and offered a more nuanced and

comprehensive understanding of the data compared to traditional methods.

Building upon this work, future research could extend BASTION to incorporate covariate-

driven seasonalities and trends, allowing for more nuanced modeling of time-series data influenced

by external factors. Additionally, BASTION’s ability to effectively extract trend and seasonality

from noisy time-series opens up opportunities for its application in diverse fields such as finance,

environmental science, and epidemiology, where understanding complex temporal dynamics is crit-

ical.
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A Full Conditional Distribution for Gibbs Sampling

A.1 Trend

For the likelihood, we have:

[Y |T , . . .] ∼ N

(
T +

P∑
i=1

Si + ζ +Xβ, σ2yν
2I

)
.

The prior distribution on T are imposed on its second differencing. Thus, we may derive the con-

ditional prior distribution of T by taking the linear combination of T ∗ = [T1, T2,∆
2T3, . . . ,∆

2TN ]′,

i.e. T = ATT
∗, where

AT =



1 0 0 · · · 0

0 1 0 · · · 0

0 1 1 · · · 0
...

...
... . . . ...

0 1 1 · · · 1





1 0 0 · · · 0

0 1 0 · · · 0

−1 1 1 · · · 0
...

...
... . . . ...

−1 1 1 · · · 1



A−1
T =



1 0 0 0 · · · 0

0 1 0 0 · · · 0

1 −1 1 0 · · · 0

0 0 −1 1 · · · 0
...

...
...

... . . . ...

0 0 0 · · · −1 1





1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 −1 1 0 · · · 0

0 0 −1 1 · · · 0
...

...
...

... . . . ...

0 0 0 · · · −1 1


=



1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

1 −2 1 · · · 0 0 0

0 1 −2 1 0 0 0
...

... . . . . . . . . . ...
...

0 0 0
. . . −2 1 0

0 0 0 · · · 1 −2 1


.

Thus, given σ2
T := [σ2yλ

2
T,1, σ

2
yλ

2
T,2, σ

2
yτ

2
Tλ

2
T,3, . . . , σ

2
yτ

2
Tλ

2
T,N ]′

[T | . . .] ∼ N(0, Aσ2
T IA

′)

∼ N

(
0,

(
(A−1

T )′
1

σ2
T

IA−1
T

)−1)
.
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Let’s define QT := (A−1
T )′ 1

σ2
T
IA−1

T . Based on our derivation of A−1
T , we have

QT =
1

σ2yτ
2
T

(
τ2T

λ2
T,1

+ 1

λ2
T,3

)
− 2

λ2
T,3

− 1

λ2
T,3

0 ... ... 0

− 2

λ2
T,3

(
τ2T

λ2
T,2

+ 4

λ2
T,3

+ 1

λ2
T,4

)
−2

λ2
T,3

− 2

λ2
T,4

− 1

λ2
T,4

. . . . . . ...

− 1

λ2
T,3

−2

λ2
T,3

− 2

λ2
T,4

(
1

λ2
T,3

+ 4

λ2
T,4

+ 1

λ2
T,5

)
−2

λ2
T,4

− 2

λ2
T,5

− 1

λ2
T,5

. . . . . .

0
. . . . . . . . . . . . . . . 0

... . . . . . . . . .
(

1

λ2
T,N−2

+ 4

λ2
T,N−1

+ 1

λ2
T,N

) (
−2

λ2
T,N−1

− 2

λ2
T,N

)
− 1

λ2
T,N

... . . . . . . . . .
(

−2

λ2
T,N−1

− 2

λ2
T,N

) (
1

λ2
T,N−1

+ 4

λ2
T,N

)
− 2

λ2
T,N

0 ... ... ... − 1

λ2
T,N

− 2

λ2
T,N

1

λ2
T,N


Therefore,

[T |y, . . .] ∼ N

((
QT +

1

σ2yν
2
I

)−1(Y −
∑P

i=1 Si − ζ −Xβ

σ2yν
2

)
,

(
QT +

1

σ2yν
2
I

)−1)
.

For the global parameter τT and the local parameter λT,t both following the half-Cauchy distribu-

tion, the parameter expansion as described in Makalic and Schmidt [2016] are used. Thus,

[τT |ψτT , . . .] ∼ IG(1/2, 1/ψτT ) [ψτT ] ∼ IG(1/2, 1)

[λT,t|ψλT ,t . . .] ∼ IG(1/2, 1/ψλT ,t) [ψλT ,t] ∼ IG(1/2, 1)
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Since they are conjugate priors, the conditional prior distributions are as follows:

[τ2T |Y , ψτT , . . .] ∼ IG

(
1

2
+
N − 2

2
,

1

ψτT

+
1

2σ2y

N∑
t=3

(
∆2Tt
λT,t

)2)
.

[ψτT |Y , τT , . . .] ∼ IG

(
1, 1 +

1

τ2T

)
.

[λ2T,t|Y , ψλT ,t . . .] ∼ IG

(
1,

1

ψλT ,t
+

1

2

(
Tt
σy

)2)
, t ∈ {1, 2}.

∼ IG

(
1,

1

ψλT ,t
+

1

2

(
∆2Tt
σyτT

)2)
, t ≥ 3.

[ψλT ,t|Y , λT,t, . . .] ∼ IG

(
1, 1 +

1

λ2T,t

)
.

A.2 Seasonality

Let’s fix j ∈ {1, . . . , P}, and consider the seasonality term S
kj

j . To simplify the notation,

let k := kj to denote the length of the cycle, and S := S
kj

j . Similar to the derivation of the

conditional prior distribution for T in section A.1, the conditional prior distribution of S is also a

linear combination of S∗ := [S2,∆
2S3, . . . ,∆

2Sk, (1−Bk)Sk+1, . . . , (1−Bk)SN ]′. Let’s also remind

ourselves that S1 = 0, thus we only consider N − 1 terms. The linear transformation AS , such that

S := ASS
∗, is defined as a the product of the following two matrices:

AS =

Ik−1 0

B3 B2

B1 0

0 IN−k,


where each matrix Bk,1, Bk,2 has the following structure:

B1 =



1 0 0 · · · 0

2 1 0 · · · 0

3 2 1 · · · 0
...

...
... . . . ...

k − 1 k − 2 k − 3 · · · 1


B2 =



Ik 0 0 · · · 0

Ik Ik 0 · · · 0

Ik Ik Ik · · · 0
...

...
... . . . ...

Ik Ik Ik · · · Ik


B3 =



0

Ik−1

0

Ik−1

0
...


.
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B1 is a (k − 1)× (k − 1) lower triangle matrix for un-differencing the second differencing operator

on the first k − 1 observations. B2 is a (N − k) × (N − k) lower triangle matrix and B3 is a

(N − k) × (k − 1) matrix for un-differencing the seasonal differencing operator on the last T − k

observations. Similar to the derivation of QT in Section A.1, Q−1
S :=

(
(A−1

S )′ 1
σ2
S
IA−1

S

)
, where

σ2
S := [σ2yλ

2
S,2, σ

2
yτ

2
Sλ

2
S,3, σ

2
yτ

2
Sλ

2
S,4, . . . , σ

2
yτ

2
Sλ

2
S,N ]′. The precision matrix QSk has a block-tridiagonal

structure with blocks separated by the seasonality k except for the top left (k−1)×(k−1) submatrix,

which has a tridiagonal structure resulting from the second differencing.

The conditional posterior distribution for S therefore,

[S|y, . . .] ∼ N

((
QS +

1

σ2yν
2
I

)−1(Y − T −
∑

i ̸=j Si − ζ −Xβ

σ2yν
2

)
,

(
QS +

1

σ2yν
2
I

)−1)
.

The conditional posterior distributions of τS and λS are identical to τTk and λT k explored in

Section A.1. With the parameter expansion of the horseshoe prior:

[τ2S |Y , ψτS , . . .] ∼ IG

(
1

2
+
N − 2

2
,

1

ψτS

+
1

2σ2y

( k∑
t=3

(
∆2St
λT,t

)2

+

N∑
t=(k+1)

(
(1−Bk)St

λT,t

)2))
.

[ψτS |Y , τS , . . .] ∼ IG

(
1, 1 +

1

τ2S

)
.

[λ2S,t|Y , ψλS ,t . . .] ∼ IG

(
1,

1

ψλS ,t
+

1

2

(
St
σy

)2)
, t = 2,

∼ IG

(
1,

1

ψλS ,t
+

1

2

(
∆2St
σyτS

)2)
, t = 3, . . . , k,

∼ IG

(
1,

1

ψλS ,t
+

1

2

(
(1−Bk)St

σyτS

)2)
, t = (k + 1), . . . , N.

[ψλS ,t|Y , λS,t, . . .] ∼ IG

(
1, 1 +

1

λ2S,t

)
.

A.3 Outliers

For the additive outlier term ζt, we use the horseshoe+ prior by Bhadra et al. [2015] to provide

more shrinkage than the one induced by the horseshoe prior. The parameter expansion by Makalic
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and Schmidt [2016] can be applied to the horseshoe+ prior:

[ζt|σy, λζ,t] ∼ N(0, σ2yλ
2
ζ,t), [λ2ζ,t|ψλζ ,t] ∼ IG(1/2, 1/ψλζ ,t),

[ψλζ ,t|τζ , ξζ,t] ∼ IG(1/2, 1/(τ2ζ ξ
2
ζ,t)),

[τ2ζ |ψτζ ] ∼ IG(1/2, 1/ψτζ ), [ψτζ ] ∼ IG(1/2, 1),

[ξ2ζ,t|ψξζ ,t] ∼ IG(1/2, 1/ψξζ ,t), [ψξζ ,t] ∼ IG(1/2, 1).

Thus, we have the following conditional posterior distribution:

[ζ|y, . . .] ∼ N

((
λ2
ζ

ν2 + λ2
ζ

)(
Y − T −

P∑
i=1

Si −Xβ

)
,

(
σ2yν

2λ2
ζ

ν2 + λ2
ζ

))
,

[λ2ζ,t|y, . . .] ∼ IG

(
1,

1

ψλζ ,t
+

1

2

(
ζt
σy

)2)
[ψλζ ,t|y, . . .] ∼ IG

(
1,

1

λζ,t
+

1

τ2ζ ξ
2
ζ,t

)

[τ2ζ |y, . . .] ∼ IG

(
N + 1

2
,

N∑
t=1

(
1

ξ2ζ,tψλζ ,t

)
+

1

ψτζ

)
[ψτζ |y] ∼ IG

(
1, 1 +

1

τ2ζ

)
[ξ2ζ,t|y, . . .] ∼ IG(

(
1,

1

τ2ζ ψλζ ,t
+

1

ψξζ ,t

)
[ψξζ ,t|y] ∼ IG

(
1, 1 +

1

ξ2ζ,t

)

A.4 Remainders

Remainder term also decomposes into two components, the time-invariant σy, and the time-

varying term νt. For the time-invariant term, we have
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σ2y ∼ IG

(
3N + P (N − 1) +m

2
,
1

2

((
Y − T −

∑P
i=1 Si − ζ −Xβ

ν

)2

+

2∑
t=1

(
Tt
λT,t

)2

+
N∑
t=3

(
∆2Tt
τTλT,t

)2

+

P∑
i=1

((
Si,2
λSi,2

)2

+
k∑

t=3

(
∆2Si,t
τSiλSi,t

)2

+

N∑
k+1

(
(1−B)kiSi,t
τSiλSi,t

)2)
+

N∑
t=1

(
ζt
λζ,t

)2

+ β′
(

1

η2
I

)
β

))

For the time-varying term ν, we closely follow the sampler proposed by Kastner and Frühwirth-

Schnatter [2014]. Define

Y ∗ = log

(
Y − T −

∑P
i=1 Si − ζ −Xβ

σy

)2

h := log(ν2).

By transforming the likelihood, we have a linear system with a non-Gaussian error term, which

may be approximated by a Gaussian mixture distribution Omori et al. [2007]:

y∗t = ht + log(u2t ), ut
iid∼ N(0, 1),

y∗t ≈ ht + µjt + σjtut, ut
iid∼ N(0, 1), jt

iid∼ Categorical(π)

ht = µ+ ϕ(ht−1 − µ) + σνϵ [ϵt]
iid∼ N(0, 1)

With the approximation of the likelihood, the model becomes conditionally Gaussian, allowing

efficient sampling of associated parameter h, µ, ϕ, σν , and the additional parameter j.

A.5 Regression Coefficients

Prior distributions on the regression coefficients, β, are assumed to be normally distributed

with their own variance terms η following Jeffreys prior. Define A = X ′X + 1
η I. The conditional
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posterior distributions for the related parameters are:

β| . . . ∼ N

(
A−1XT

(
Y − T −

P∑
i=1

Si − ζ

)
, σ2yA

−1

)

ηj | . . . ∼ IG

(
1

2
,
β2j
2σ2y

)
j = 1, . . . ,m.

B Simulation Schemes

B.1 Data Generating Scheme 1

Observation Equation

Yt = Tt + S12
t + S40

t +Rt.

Trend

Tt =



m1(0.04)(t− b1) + c1, if 0 ≤ t < b1,

m2(0.04)(t− b2) + c2, if b1 ≤ t < b1 + b2,

m3(0.04)(t− b3) + c3, if b1 + b2 ≤ t < b1 + b2 + b3,

m4(0.04)(t− b4) + c4, if b1 + b2 + b3 ≤ t ≤ 500,

[m1, . . . ,m4]
iid∼ U(−20, 20),

[c1, . . . , c4]
iid∼ U(−10, 10),

[b1, . . . , b3]
iid∼ U(30, 125).

Seasonal

S12
t = γ121 sin

(
2πt

12

)
+ γ122 cos

(
2πt

12

)
[γ121 , γ

12
2 ]

iid∼ N(0, 42),

S40
t = γ401 sin

(
2πt

40

)
+ γ402 cos

(
2πt

40

)
[γ401 , γ

40
2 ]

iid∼ N(0, 52).
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Error

[Rt]
iid∼ N(0, 22)

B.2 Data Generating Scheme 2

Observation Equation

Yt = Tt + S40
t +Rt.

Trend

Tt =
mt

500

[m] ∼ N(0, 302).

Seasonal

St =



ṽ1, if t ∈ {t | t = 40k + j, 0 ≤ k ≤ 8, 1 ≤ j ≤ 10},

ṽ2, if t ∈ {t | t = 40k + j, 0 ≤ k ≤ 8, 11 ≤ j ≤ 20},

ṽ3, if t ∈ {t | t = 40k + j, 0 ≤ k ≤ 8, 21 ≤ j ≤ 30},

ṽ4, if t ∈ {t | t = 40k + j, 0 ≤ k ≤ 8, 31 ≤ j ≤ 40},

[v1, . . . , v4]
iid∼ U (−8, 8) ,

ṽi = vi −
1

4

4∑
j=1

vj .

Error

[Rt]
iid∼ N

(
0,
m2

100

)
.

B.3 Data Generating Scheme 3

Observation Equation

Yt = Tt + S50
t +Rt.
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Trend

Tt = b0 + b1
t

500
+ b2

(
t

500

)2

+ b3

(
t

500

)3

[b0] ∼ U(−15, 15),

[b1, . . . , b4]
iid∼ N(0, 202).

Seasonal

S50
t = γ501 sin

(
2πt

50

)
+ γ502 cos

(
2πt

50

)
[γ501 , γ

50
2 ]

iid∼ N(0, 52).

Error

[Rt]
iid∼ N(0, exp(ht))

ht = 2.5 + 0.98(ht−1 − 2.5) + 0.2ϵt

[ϵt]
iid∼ N(0, 1)

B.4 Data Generating Scheme 4

Observation Equation

Yt = Tt + S12
t + S50

t +Ot +Rt, t = 1, . . . , 500.

Trend

Tt =



m1(0.04)(t− b1) + c1, if 0 ≤ t < b1,

m2(0.04)(t− b2) + c2, if b1 ≤ t < b1 + b2,

m3(0.04)(t− b3) + c3, if b1 + b2 ≤ t < b1 + b2 + b3,

m4(0.04)(t− b4) + c4, if b1 + b2 + b3 ≤ t ≤ 500,

[m1, . . . ,m4]
iid∼ U(−20, 20),

[c1, . . . , c4]
iid∼ U(−10, 10),

[b1, . . . , b3]
iid∼ U(30, 125).
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Seasonal

S12
t = γ121 sin

(
2πt

12

)
+ γ122 cos

(
2πt

12

)
[γ121 , γ

12
2 ]

iid∼ N(0, 42),

S50
t =



ṽ1, if t ∈ {t | t = 40k + j, 0 ≤ k ≤ 8, 1 ≤ j ≤ 10},

ṽ2, if t ∈ {t | t = 40k + j, 0 ≤ k ≤ 8, 11 ≤ j ≤ 20},

ṽ3, if t ∈ {t | t = 40k + j, 0 ≤ k ≤ 8, 21 ≤ j ≤ 30},

ṽ4, if t ∈ {t | t = 40k + j, 0 ≤ k ≤ 8, 31 ≤ j ≤ 40},

[v1, . . . , v4]
iid∼ U (−20, 20) ,

ṽi = vi −
1

4

4∑
j=1

vj

Outlier

Ot =


at, if t ∈ {j1, j2, . . . , jl},

0, if t ̸∈ {j1, j2, . . . , jl},

at
iid∼ N(0, 152),

l ∼ Pois(5),

[j1, j2, . . . , jl] ∼ U(1, 500) without replacement.

Error

[Rt]
iid∼ N(0, exp(ht))

ht = 0.8 + 0.98(ht−1 − 2.5) + 0.2ϵt

[ϵt]
iid∼ N(0, 1)

B.5 Data Generating Scheme 5

Observation Equation

Yt = Tt + S50
t +Rt.
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Trend

Tt = b0 + b1
t

500
+ b2

(
t

500

)2

+ b3

(
t

500

)3

,

[b0] ∼ U(−15, 15),

[b1, . . . , b4]
iid∼ N(0, 202).

Seasonal

S50
t = γ501 sin

(
2πt

50

)
+ γ502 cos

(
2πt

50

)
,

[γ501 , γ
50
2 ]

iid∼ N(0, 52).

Error

[Rt]
iid∼ N(0, 1.52).
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